First application of the Trojan Horse Method with a radioactive ion beam: study of the ${}^{18}F(p,\alpha){}^{15}O$ reaction at astrophysical energies[†]

S. Cherubini,^{*1,*2,*3} M. Gulino,^{*1,*3,*4} C. Spitaleri,^{*1,*2} G.G. Rapisarda,^{*1,*2} M. La Cognata,^{*1} L. Lamia,^{*2} R.G. Pizzone,^{*1} S. Romano,^{*1,*2} S. Kubono,^{*3,*5} H. Yamaguchi,^{*5} S. Hayakawa,^{*1,*5} Y. Wakabayashi,^{*5} N. Iwasa,^{*6} S. Kato,^{*7} T. Komatsubara,^{*8} T. Teranishi,^{*9} A. Coc,^{*10} N. de Séréville,^{*11} F. Hammache,^{*11} G. Kiss,^{*12} S. Bishop,^{*3,*13} and D.N. Binh^{*5,*14}

The results of a pioneering experiment where the Trojan Horse Method^{1,2)} was applied for the first time for measuring the cross section of an astrophysically important reaction, namely ¹⁸F $(p, \alpha)^{15}$ O at Nova energies^{3,4)}, using a radioactive beam were published in Phys. Rev. C **92**, 015805 (2015).

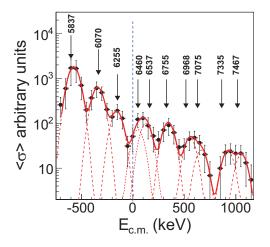


Fig. 1. The nuclear cross section spectrum as a function of the p-¹⁸F cm energy. The blue vertical line shows the position of the threshold for the ¹⁸F+p reaction ($E_{th} =$ 6.41 MeV). The red dashed lines represent Gaussians used for fitting the data. The numbers above the arrows represents the peak positions in ¹⁹Ne excitation energy obtained from the fitting procedure.

- † Condensed from the article in Phys. Rev. C 92, 015805 (2015)
- ^{*1} INFN-LNS, Catania, Italy
- *2 Dipartimento di Fisica ed Astronomia, Università di Catania
 *3 Riken, Nishina Center
- *4 Università di Enna KORE
- *⁴ RIKEN, Nishina Center
- ^{*5} Center for Nuclear Study, The University of Tokyo
- *6 Department of Physics, Tohoku University
- *7 Department of Physics, Yamagata University
- *8 Rare Isotope Science Project, Institute for Basic Science
- *9 Department of Physics, Kyushu University
- *¹⁰ Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3
 *¹¹ Institut de Divisione Nucléaire, IN2P3
- *¹¹ Institut de Physique Nucléaire, IN2P3
- *12 Institute for Nuclear Research (MTA-ATOMKI)
- *13 TUM
- $^{\ast 14}$ 30 MeV Cyclotron Center, Tran Hung Dao Hospital

The experiment was performed at the RIKEN Nishina Center using the CRIB apparatus from the University of Tokyo. The primary beam of ¹⁸O delivered by the AVF cyclotron was used to produce a ¹⁸F radioactive beam with intensity in the range of 10^{5} - 10^{6} pps.

The nuclear cross section and the astrophysical factor S(E) were extracted from the data for the reaction ${}^{18}F(p,\alpha){}^{15}O$. These are shown in Figs. 1 and 2 respectively. In order to improve the results obtained in this work, a new measurement of the same reaction was performed again in Fall 2015. The new experiment is also reported in this Accelerator Progress Report⁵.

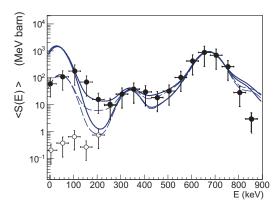


Fig. 2. The ¹⁸F(p, α)¹⁵O astrophysical S-factor from this work. The full dots are THM experimental data with the assumption of $J^{\pi} = 3/2^+$ for the resonance at E = 6460 keV, the open ones corresponds to the assumption of $J^{\pi} = 5/2^-$ (the difference from this last assumption to the other possible value $1/2^-$ and $3/2^$ being negligeable within the errors). The solid and dashed lines shown in the figure are calculations presented and discussed in Ref.⁶⁾ smeared to the present experimental resolution.

References

- 1) R. E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014).
- 2) S. Cherubini et al., ApJ 457, 855, (1996).
- 3) A. S. Adekola et al., Phys. Rev., C83 052801 (R) (2011).
- 4) A. M. Laird et al., Phys. Rev. Lett., 110, 032502 (2013).
- 5) S. Cherubini et al.: In this report.
- 6) C. E. Beer et al., Phys. Rev., C 83, 042801 (2011)