Spin-dipole response of ⁴He by exothermic charge exchange (${}^{8}\text{He}, {}^{8}\text{Li}^{*}(1^{+})$)

H. Miya,^{*1} S. Shimoura,^{*1} K. Kisamori,^{*1,*2} M. Assié,^{*3} H. Baba,^{*2} T. Baba,^{*4} D. Beaumel,^{*3} M. Dozono,^{*1} T. Fujii,^{*2} N. Fukuda,^{*2} S. Go,^{*1} F. Hammache,^{*3} E. Ideguchi,^{*5} N. Inabe,^{*2} M. Itoh,^{*6} D. Kameda,^{*2} S. Kawase,^{*1} T. Kawabata,^{*4} M. Kobayashi,^{*1} Y. Kondo,^{*7} T. Kubo,^{*2} Y. Kubota,^{*1,*2} C. S. Lee,^{*1,*2} Y. Maeda,^{*8} H. Matsubara,^{*9} S. Michimasa,^{*1} K. Miki,^{*5} T. Nishi,^{*10} M. Kurata-Nishimura,^{*2} S. Ota,^{*1} H. Sakai,^{*2} S. Sakaguchi,^{*11} M. Sasano,^{*2} H. Sato,^{*2} Y. Shimizu,^{*2} H. Suzuki,^{*2} A. Stolz,^{*12} M. Takaki,^{*1} H. Takeda,^{*2} S. Takeuchi,^{*2} A. Tamii,^{*5} H. Tokieda,^{*1} M. Tsumura,^{*4} T. Uesaka,^{*2} K. Yako,^{*1} Y. Yanagisawa,^{*2} and R. Yokoyama^{*1}

The spin dipole (SD) ($\Delta S = \Delta L = 1$) is one of the spin-isospin responses. On a double-closed nucleus, the SD excitation contribution is large because of the nucleon configuration. ⁴He is leghtest of the double-closed nucleus, and has a simple configuration. It is easy to understand the SD response. This is important for the study of supernova nucleosynthesis with the neutrino-nucleus reaction¹⁾.

We conducted the exothermic charge-exchange (CE) reaction ${}^{4}\text{He}({}^{8}\text{He}, {}^{8}\text{Li}^{*}(1^{+})){}^{4}\text{H}$. CE reactions are used as a powerful probe to study the spin-isospin responses. The exothermic reaction enables targets to excite at low momentum transfer due to the high reaction Q-value. The kinematics of this reaction are closed of the neutrino-nucleus reaction, in contrast to the case in previous experiments. In this article, the angular distribution of the reaction is reported.

The reaction was measured with the BigRIPS³⁾, the high-Resolution beamline⁴⁾, and the SHARAQ spectrometer⁵⁾ at RIKEN RIBF. The liquid-⁴He⁶⁾ was installed at the target position of the SHARAQ. The secondary ⁸He beam irradiated the target at an intensity of about 2 MHz. In order to determine the missing mass energy and scattering angle, the trajectory and momenta of ⁸He and ⁸Li were measured by using LP-MWDCs⁷⁾ and CRDCs⁸⁾ in the beamline and SHARAQ. The detail experimental setup is discribed in another report⁹⁾.

Figure 1 shows the cross section angular distribution obtained from the $({}^{8}\text{He}, {}^{8}\text{Li}^{*}(1^{+}))$. The vertical and horizontal axes are the differential cross section and scattering angle in the center-of-mass frame, respectively. The closed circles were reduced from the experimental data. The cross sections were summed

- *¹ Center for Nuclear Study, The University of Tokyo
- *² RIKEN Nishina Center
- *³ Institut de Physique Nucléaire, Orsay
- *4 Department of Physics, Kyoto University
 *5 Basearch Center Nuclear Physics, Ocaka I
- *5 Research Center Nuclear Physics, Osaka University *6 Cycletron and Padiciotopa Conton Tobalu University
- *6 Cyclotron and Radioisotope Center, Tohoku University *7 Department of physics, Talua Institute of Technology.
- *7 Department of physics, Tokyo Institute of Technology
 *8 Department of Applied Physics, University of Miveralia
- *8 Department of Applied Physics, University of Miyazaki *9 National Institute of Padialogical Sciences
- ^{*9} National Institute of Radiological Sciences
- ^{*10} Department of physics, The University of Tokyo
- *¹¹ Department of Physics, Kyushu University
- *¹² National Superconducting Cyclotron Laboratory, Michigan State University

Fig. 1. Cross section angular distribution obtained from the (⁸He, ⁸Li^{*}(1⁺)) reaction. Closed circles donate the experimental data. The lines show the DWBA calculation on the angular momentum transfer of $\Delta L =$ 0, 1, 2, 3.

over the excitation energy in the range from 0 MeV to 30 MeV for the continuum state of ⁴H. The experimental data were compared with the DWBA calculation with FOLD¹⁰. The lines show the calculated cross sections on the angular momentum transfer of $\Delta L = 0, 1, 2, 3$. The experimental data qualitatively indicated SD transition.

Comparison between the experimental data and the theoretical calculation of the isovector type SD response of ${}^{4}\text{He}$ is now in progress.

References

- 1) T. Suzuki et al., Phys. Rev. C 74, 034307 (2006).
- W. G. Love, M. A. Franey, Phys. Rev. C 24, 1073 (1981).
- 3) T. Kubo et al., Nucl. Instr. Meth. B 204, 97-113 (2003).
- T. Kawabata *et al.*, Nucl. Instr. Meth. B 266, 4201-4204 (2008).
- S. Michimasa *et al.*, Nucl. Instr. Meth. B **317**, 305-310 (2013).
- 6) H. Ryuto et al, Nucl. Instr. Meth. A555, 1-5 (2005).
- 7) H. Miya et al., Nucl. Instr. Meth. B 317, 701-704 (2013).
- 8) K. Kisamori et al., CNS Ann. Rep. 2011 (2013).
- 9) H. Miya et al., RIKEN Prog. Rep. 46 25 (2013).
- J. Cook *et al.*, 'Computer code FOLD/DWHI', Frorida State University (1988).