Spin-dipole response of ${ }^{4} \mathrm{He}$ by exothermic charge exchange (${ }^{8} \mathrm{He},{ }^{8} \mathrm{Li}^{*}\left(1^{+}\right)$)

H. Miya, ${ }^{* 1}$ S. Shimoura, ${ }^{* 1}$ K. Kisamori, ${ }^{* 1, * 2}$ M. Assié, ${ }^{* 3}$ H. Baba, ${ }^{* 2}$ T. Baba, ${ }^{* 4}$ D. Beaumel, ${ }^{* 3}$ M. Dozono, ${ }^{* 1}$ T. Fujii, ${ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ S. Go, ${ }^{* 1}$ F. Hammache, ${ }^{* 3}$ E. Ideguchi, ${ }^{* 5}$ N. Inabe, ${ }^{* 2}$ M. Itoh, ${ }^{* 6}$ D. Kameda, ${ }^{* 2}$ S. Kawase, ${ }^{* 1}$ T. Kawabata, ${ }^{* 4}$ M. Kobayashi, ${ }^{* 1}$ Y. Kondo, ${ }^{* 7}$ T. Kubo, ${ }^{* 2}$ Y. Kubota, ${ }^{* 1, * 2}$ C. S. Lee, ${ }^{* 1, * 2}$ Y. Maeda, ${ }^{* 8}$ H. Matsubara, ${ }^{* 9}$ S. Michimasa, ${ }^{* 1}$ K. Miki, ${ }^{* 5}$ T. Nishi, ${ }^{* 10}$ M. Kurata-Nishimura, ${ }^{* 2}$ S. Ota, ${ }^{* 1}$ H. Sakai, ${ }^{* 2}$ S. Sakaguchi, ${ }^{* 11}$ M. Sasano, ${ }^{* 2}$ H. Sato, ${ }^{* 2}$ Y. Shimizu, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ A. Stolz, ${ }^{* 12}$ M. Takaki, ${ }^{* 1}$ H. Takeda, ${ }^{* 2}$ S. Takeuchi, ${ }^{* 2}$ A. Tamii, ${ }^{* 5}$ H. Tokieda, ${ }^{* 1}$ M. Tsumura, ${ }^{* 4}$ T. Uesaka, ${ }^{* 2}$ K. Yako, ${ }^{* 1}$ Y. Yanagisawa, ${ }^{* 2}$ and R. Yokoyama*1

The spin dipole (SD) $(\Delta S=\Delta L=1)$ is one of the spin-isospin responses. On a double-closed nucleus, the SD excitation contribution is large because of the nucleon configuration. ${ }^{4} \mathrm{He}$ is leghtest of the doubleclosed nucleus, and has a simple configuration. It is easy to understand the SD response. This is important for the study of supernova nucleosynthesis with the neutrino-nucleus reaction ${ }^{1)}$.

We conducted the exothermic charge-exchange (CE) reaction ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Li}^{*}\left(1^{+}\right)\right)^{4} \mathrm{H}$. CE reactions are used as a powerful probe to study the spin-isospin responses. The exothermic reaction enables targets to excite at low momentum transfer due to the high reaction Q value. The kinematics of this reaction are closed of the neutrino-nucleus reaction, in contrast to the case in previous experiments. In this article, the angular distribution of the reaction is reported.

The reaction was measured with the BigRIPS ${ }^{3)}$, the high-Resolution beamline ${ }^{4)}$, and the SHARAQ spectrometer ${ }^{5)}$ at RIKEN RIBF. The liquid- ${ }^{4} \mathrm{He}^{6)}$ was installed at the target position of the SHARAQ. The secondary ${ }^{8} \mathrm{He}$ beam irradiated the target at an intensity of about 2 MHz . In order to determine the missing mass energy and scattering angle, the trajectory and momenta of ${ }^{8} \mathrm{He}$ and ${ }^{8} \mathrm{Li}$ were measured by using LP-MWDCs ${ }^{7}$) and $\mathrm{CRDCs}^{8)}$ in the beamline and SHARAQ. The detail experimental setup is discribed in another report ${ }^{9}$.

Figure 1 shows the cross section angular distribution obtained from the $\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Li}^{*}\left(1^{+}\right)\right)$. The vertical and horizontal axes are the differential cross section and scattering angle in the center-of-mass frame, respectively. The closed circles were reduced from the experimental data. The cross sections were summed

[^0]

Fig. 1. Cross section angular distribution obtained from the $\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Li}^{*}\left(1^{+}\right)\right)$reaction. Closed circles donate the experimental data. The lines show the DWBA calculation on the angular momentum transfer of $\Delta L=$ $0,1,2,3$.
over the excitation energy in the range from 0 MeV to 30 MeV for the continuum state of ${ }^{4} \mathrm{H}$. The experimental data were compared with the DWBA calculation with FOLD ${ }^{10}$. The lines show the calculated cross sections on the angular momentum transfer of $\Delta L=0,1,2,3$. The experimental data qualitatively indicated SD transition.

Comparison between the experimental data and the theoretical calculation of the isovector type SD response of ${ }^{4} \mathrm{He}$ is now in progress.

References

1) T. Suzuki et al., Phys. Rev. C 74, 034307 (2006).
2) W. G. Love, M. A. Franey, Phys. Rev. C 24, 1073 (1981).
3) T. Kubo et al., Nucl. Instr. Meth. B 204, 97-113 (2003).
4) T. Kawabata et al., Nucl. Instr. Meth. B 266, 42014204 (2008).
5) S. Michimasa et al., Nucl. Instr. Meth. B 317, 305-310 (2013).
6) H. Ryuto et al, Nucl. Instr. Meth. A555, 1-5 (2005).
7) H. Miya et al., Nucl. Instr. Meth. B 317, 701-704 (2013).
8) K. Kisamori et al., CNS Ann. Rep. 2011 (2013).
9) H. Miya et al., RIKEN Prog. Rep. 4625 (2013).
10) J. Cook et al., 'Computer code FOLD/DWHI', Frorida State University (1988).

[^0]: *1 Center for Nuclear Study, The University of Tokyo
 *2 RIKEN Nishina Center
 *3 Institut de Physique Nucléaire, Orsay
 *4 Department of Physics, Kyoto University
 *5 Research Center Nuclear Physics, Osaka University
 *6 Cyclotron and Radioisotope Center, Tohoku University
 *7 Department of physics, Tokyo Institute of Technology
 *8 Department of Applied Physics, University of Miyazaki
 *9 National Institute of Radiological Sciences
 *10 Department of physics, The University of Tokyo
 *11 Department of Physics, Kyushu University
 *12 National Superconducting Cyclotron Laboratory, Michigan State University

