Spectroscopic factors of the proton bound states in ^{23,25}F

T. L. Tang,^{*1} S. Kawase,^{*1} T. Uesaka,^{*2} D. Beaumel,^{*2,*3} M. Dozono,^{*2} T. Fujii,^{*1,*2} N. Fukuda,^{*2} T. Fukunaga,^{*2,*4}

A. Galindo-Uribarri,^{*5} S. H. Hwang,^{*6} N. Inabe,^{*2} D Kameda,^{*2} T. Kawahara,^{*2,*7} W. Y. Kim,^{*6} K. Kisamori,^{*1,*2}

M. Kobayashi,^{*1} T. Kubo,^{*2} Y. Kubota,^{*1,*2} K. Kusaka,^{*2} C. S. Lee,^{*1} Y. Maeda,^{*8} H. Matsubara,^{*2} S. Michimasa,^{*1}

H. Miya, *1,*2 T. Noro, *2,*4 A. Obertelli,*9 S. Ota,*1 E. Padilla-Rodal,*10 S. Sakaguchi,*2,*4 H. Sakai,*2 M. Sasano,*2

S. Shimoura,^{*1} S. S. Stepanyan,^{*6} H. Suzuki,^{*2} M. Takaki,^{*1,*2} H. Takeda,^{*2} H. Tokieda,^{*1} T. Wakasa,^{*2,*4} T. Wakui,^{*2,*11}

K. Yako,^{*1} Y. Yanagisawa,^{*2} J. Yasuda,^{*2,*4} R. Yokoyama,^{*1,*2}, K. Yoshida,^{*2} and J. Zenihiro,^{*2} for SHARAQ04 collaboration

The proton quasi-free knockout reaction on ²³F (²⁵F) was studied in SHARAQ04 experiment at RIBF, RIKEN¹). The spectrum of excitation energy of the residue ²²O (²⁴O) was deduced and partitioned by the neutron thresholds²). The orbital angular momentum of each partition was identified by comparison with the DWIA calculation, and then the sum of the spectroscopic factors (SFs) was extracted ³). Figure 1 shows the spectra of excitation energy.

Fig. 1. Spectra of excitation energy of ${}^{23}F(p,2p)$ (left) and ${}^{25}F(p,2p)$ (right).

In ²³F(p,2p), the partition (²³F,²²O) originates from the 1d_{5/2} shell and the SF is 0.4 ± 0.1 . The partitions (²³F,^{21,20}O) originate from the p-shell with the sum of the SFs of 4.8 ± 0.7 . In ²⁵F(p,2p), the partitions (²⁵F,^{24,23}O) originate from the 1d_{5/2} shell and the sum of the SFs is 0.9 ± 0.7 . The partitions (²⁵F,^{22,21}O) originate from the p-shell with the sum of the SFs of 4.4 ± 0.9 .

The sum of the SFs of the $1d_{5/2}$ proton of ${}^{25}F$ can be understood as a result of the double magic of ${}^{24}O$ ⁴⁾. The sum of the SFs of the p-shell for both ${}^{23}F$ and ${}^{25}F$ are approximately 75% of the shell limit. This result is similar to most stable isotopes. The extraordinary small SF of the $1d_{5/2}$ of ${}^{23}F$ needs explanations.

The independent particle model should be valid in 23 F because the experimental proton shell gap between the $1d_{5/2}$ and $1p_{1/2}$ is 10 MeV, and the proton-neutron interaction energy is only 0.7 MeV. There could be missing strength at

*4 Department of Physics, Kyushu University

- *7 Department of Physics, Toho University
- *8 Department of Applied Physics, University of Miyazaki
- *9 CEA Saclay
- *¹⁰ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
- *11 CYRIC, Tohoku University

higher excitation energies. The wave function of ${}^{23}F |{}^{23}F \rangle$ can be expressed as a linear combination of proton single particle wave functions $|p\rangle$ coupled to ${}^{22}O$ wave functions $|{}^{22}O \rangle$, such that

$$|^{23}F\rangle = \sum_{i,j} \beta_{ij} \left[|p\rangle_i|^{22}O \right]_j,$$

where β_{ij} is the square root of the SF, and the square bracket [] represents the angular and isospin coupling and anti-symmetry operator. The known parities of the excited states of ²²O are all negative above 6.9 MeV (1-neutron threshold is 6.8 MeV). Because the residual interaction cannot mix different parity states, the sum of the SFs of the $1d_{5/2}$ shell is almost limited up to 1-neutron threshold. However, the knowledge of the excited states is not complete that there could be undiscovered positive parity states above the neutron threshold.

A mean field calculation suggests that ²³F is slightly deformed ($\beta_2 = -0.2$) ^{5,6}). The deformed oxygen core has to be expanded into many excited states of free oxygen; therefore, the deformation could reduce the knockout cross section. In the reaction aspect, the (p,2p) cross section of a slightly deformed nucleus will be different from that of a spherical nucleus due to the focusing effect ⁷).

In conclusion, the SFs of the proton bound states of 23 F and 25 F were deduced. The $1d_{5/2}$ proton of 25 F is a strong candidate of a single particle orbit. The nature of the $1d_{5/2}$ proton of 23 F requires further study. The results will be compared with the shell model calculation in the near future.

References

- 1) S. Kawase et al.: CNS annual report 2012, (2013) 13.
- 2) T. L. Tang et al.: RIKEN Accel. Prog. Rep. 48 (2015) 57.
- 3) T. L. Tang et al.: CNS annual report 2014 (to be published).
- 4) R. V. F. Janssens: Nature **459** (2009) 1069.
- 5) G. A. Lalazissis et al.: The. Euro. Phys. Jour. A 22 (2004) 37.
- 6) M. K. Sharma et al.: Chin. Phys. C 39 (2015) 064102
- 7) P. A. Deutchman et al.: Nucl. Phys. A 283 (1977) 289.

^{*1} Center of Nuclear Study (CNS), University of Tokyo

^{*2} RIKEN Nishina Center

^{*&}lt;sup>3</sup> Institut de Physique Nucléaire d'Orsay

^{*5} Oak Ridge National Laboratory

^{*6} Department of Physics, Kyungpook National University