Spectroscopic factors of the proton bound states in ${ }^{23,25} \mathrm{~F}$

T. L. Tang, ${ }^{* 1}$ S. Kawase, ${ }^{* 1}$ T. Uesaka, ${ }^{* 2}$ D. Beaumel, ${ }^{* 2,{ }^{* 3}}$ M. Dozono, ${ }^{* 2}$ T. Fujii, ${ }^{*} 1,{ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ T. Fukunaga, ${ }^{* 2,{ }^{* 4}}$ A. Galindo-Uribarri, ${ }^{*}$ S. H. Hwang, ${ }^{*}{ }^{*}$ N. Inabe, ${ }^{* 2}$ D Kameda, ${ }^{* 2}$ T. Kawahara, ${ }^{*},{ }^{*}{ }^{*}{ }^{*}$ W. Y. Kim, ${ }^{*}{ }^{*}$ K. Kisamori, ${ }^{*},{ }^{*}{ }^{*} 2$ M. Kobayashi, ${ }^{* 1}$ T. Kubo, ${ }^{* 2}$ Y. Kubota, ${ }^{*} 1,{ }^{* 2}$ K. Kusaka, ${ }^{* 2}$ C. S. Lee, ${ }^{* 1}$ Y. Maeda, ${ }^{* 8}$ H. Matsubara, ${ }^{*}$ S. Michimasa, ${ }^{* 1}$ H. Miya,,${ }^{* 1,{ }^{* 2}}$ T. Noro, ${ }^{* 2,{ }^{* 4}}$ A. Obertelli,,${ }^{* 9}$ S. Ota, ${ }^{* 1}$ E. Padilla-Rodal, ${ }^{* 10}$ S. Sakaguchi,,${ }^{* 2,{ }^{* 4}}$ H. Sakai, ${ }^{* 2}$ M. Sasano, ${ }^{* 2}$
S. Shimoura, ${ }^{* 1}$ S. S. Stepanyan, ${ }^{* 6}$ H. Suzuki, ${ }^{* 2}$ M. Takaki, ${ }^{*}{ }^{1,}{ }^{*}$ H. Takeda, ${ }^{* 2}$ H. Tokieda, ${ }^{* 1}$ T. Wakasa, ${ }^{* 2,{ }^{*} 4}$ T. Wakui, ${ }^{* 2,{ }^{*}{ }^{11}}$ K. Yako, ${ }^{* 1}$ Y. Yanagisawa, ${ }^{* 2}$ J. Yasuda, ${ }^{* 2,{ }^{* 4}}$ R. Yokoyama, ${ }^{* 1,{ }^{*} 2}$, K. Yoshida, ${ }^{*}{ }^{*}$ and J. Zenihiro, ${ }^{* 2}$ for SHARAQ04 collaboration

The proton quasi-free knockout reaction on ${ }^{23} \mathrm{~F}\left({ }^{25} \mathrm{~F}\right)$ was studied in SHARAQ04 experiment at RIBF, RIKEN ${ }^{1)}$. The spectrum of excitation energy of the residue ${ }^{22} \mathrm{O}\left({ }^{24} \mathrm{O}\right)$ was deduced and partitioned by the neutron thresholds ${ }^{2}$. The orbital angular momentum of each partition was identified by comparison with the DWIA calculation, and then the sum of the spectroscopic factors (SFs) was extracted ${ }^{3)}$. Figure 1 shows the spectra of excitation energy.

Fig. 1. Spectra of excitation energy of ${ }^{23} \mathrm{~F}(\mathrm{p}, 2 \mathrm{p})$ (left) and ${ }^{25} \mathrm{~F}(\mathrm{p}, 2 \mathrm{p})$ (right).

In ${ }^{23} \mathrm{~F}(\mathrm{p}, 2 \mathrm{p})$, the partition $\left({ }^{23} \mathrm{~F},{ }^{22} \mathrm{O}\right)$ originates from the $1 \mathrm{~d}_{5 / 2}$ shell and the SF is 0.4 ± 0.1. The partitions $\left({ }^{23} \mathrm{~F},{ }^{21,20} \mathrm{O}\right)$ originate from the p-shell with the sum of the SFs of $4.8 \pm$ 0.7. In ${ }^{25} \mathrm{~F}(\mathrm{p}, 2 \mathrm{p})$, the partitions $\left({ }^{25} \mathrm{~F},{ }^{24,23} \mathrm{O}\right)$ originate from the $1 \mathrm{~d}_{5 / 2}$ shell and the sum of the SFs is 0.9 ± 0.7. The partitions $\left({ }^{25} \mathrm{~F},{ }^{22,21} \mathrm{O}\right)$ originate from the p -shell with the sum of the SFs of 4.4 ± 0.9.

The sum of the SFs of the $1 \mathrm{~d}_{5 / 2}$ proton of ${ }^{25} \mathrm{~F}$ can be understood as a result of the double magic of ${ }^{24} \mathrm{O}{ }^{4)}$. The sum of the SFs of the p-shell for both ${ }^{23} \mathrm{~F}$ and ${ }^{25} \mathrm{~F}$ are approximately 75% of the shell limit. This result is similar to most stable isotopes. The extraordinary small SF of the $1 \mathrm{~d}_{5 / 2}$ of ${ }^{23} \mathrm{~F}$ needs explanations.

The independent particle model should be valid in ${ }^{23} \mathrm{~F}$ because the experimental proton shell gap between the $1 \mathrm{~d}_{5 / 2}$ and $1 \mathrm{p}_{1 / 2}$ is 10 MeV , and the proton-neutron interaction energy is only 0.7 MeV . There could be missing strength at

[^0]higher excitation energies. The wave function of ${ }^{23} \mathrm{~F}\left|{ }^{23} \mathrm{~F}\right\rangle$ can be expressed as a linear combination of proton single particle wave functions $|p\rangle$ coupled to ${ }^{22} \mathrm{O}$ wave functions $\left.\left.\right|^{22} O\right\rangle$, such that
$$
\left.\left|{ }^{23} F\right\rangle=\sum_{i, j} \beta_{i j}\left[\left.|p\rangle_{i}\right|^{22} O\right\rangle_{j}\right]
$$
where $\beta_{i j}$ is the square root of the SF , and the square bracket [] represents the angular and isospin coupling and anti-symmetry operator. The known parities of the excited states of ${ }^{22} \mathrm{O}$ are all negative above 6.9 MeV (1-neutron threshold is 6.8 MeV). Because the residual interaction cannot mix different parity states, the sum of the SFs of the $1 \mathrm{~d}_{5 / 2}$ shell is almost limited up to 1 -neutron threshold. However, the knowledge of the excited states is not complete that there could be undiscovered positive parity states above the neutron threshold.

A mean field calculation suggests that ${ }^{23} \mathrm{~F}$ is slightly deformed $\left(\beta_{2}=-0.2\right)^{5,6}$. The deformed oxygen core has to be expanded into many excited states of free oxygen; therefore, the deformation could reduce the knockout cross section. In the reaction aspect, the ($p, 2 p$) cross section of a slightly deformed nucleus will be different from that of a spherical nucleus due to the focusing effect ${ }^{7}$.

In conclusion, the SFs of the proton bound states of ${ }^{23} \mathrm{~F}$ and ${ }^{25} \mathrm{~F}$ were deduced. The $1 \mathrm{~d}_{5 / 2}$ proton of ${ }^{25} \mathrm{~F}$ is a strong candidate of a single particle orbit. The nature of the $1 \mathrm{~d}_{5 / 2}$ proton of ${ }^{23} \mathrm{~F}$ requires further study. The results will be compared with the shell model calculation in the near future.

References

1) S. Kawase et al.: CNS annual report 2012, (2013) 13.
2) T. L. Tang et al.: RIKEN Accel. Prog. Rep. 48 (2015) 57.
3) T. L. Tang et al.: CNS annual report 2014 (to be published).
4) R. V. F. Janssens: Nature 459 (2009) 1069.
5) G. A. Lalazissis et al.: The. Euro. Phys. Jour. A 22 (2004) 37.
6) M. K. Sharma et al.: Chin. Phys. C 39 (2015) 064102
7) P. A. Deutchman et al.: Nucl. Phys. A 283 (1977) 289.

[^0]: ${ }^{* 1}$ Center of Nuclear Study (CNS), University of Tokyo
 *2 RIKEN Nishina Center
 *3 Institut de Physique Nucléaire d'Orsay
 *4 Department of Physics, Kyushu University
 *5 Oak Ridge National Laboratory
 *6 Department of Physics, Kyungpook National University
 *7 Department of Physics, Toho University
 *8 Department of Applied Physics, University of Miyazaki
 *9 CEA Saclay

 * 10 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
 *11 CYRIC, Tohoku University

