Second campaign of the SEASTAR project

P. Doornenbal,^{*1} A. Obertelli,^{*1,*2} T. Ando,^{*1,*3} T. Arici,^{*4} G. Authelet,^{*1,*2} H. Baba,^{*1} A. Blazhev,^{*5} F. Browne,^{*6} A.M. Bruce,^{*6} D. Calvet,^{*1,*2} R.J. Carroll,^{*7} F. Château,^{*1,*2} S. Chen^{*1} L.X. Chung,^{*8}

F. Browne,*^o A.M. Bruce,*^o D. Calvet,*^{1,*2} R.J. Carroll,*' F. Château,*^{1,*2} S. Chen*¹ L.X. Chung,*^o
A. Corsi,*^{1,*2} M.L. Cortés,*^{9,*4} A. Delbart,*^{1,*2} M. Dewald,*⁵ B. Ding,*¹⁰ F. Flavigny,*¹¹ S. Franchoo,*¹¹
J.-M. Gheller,*^{1,*2} A. Giganon,*^{1,*2} A. Gillibert,*^{1,*2} M. Górska,*⁴ A. Gottardo,*¹¹ A. Jungclaus,*¹²
V. Lapoux,*^{1,*2} J. Lee,*¹³ M. Lettmann,*⁹ B.D. Linh,*⁸ J. Liu,*¹³ Z. Liu,*¹⁰ C. Lizarazo,*^{4,*9}
S. Momiyama,*^{1,*3} K. Moschner,*⁵ T. Motobayashi,*¹ M. Nagamine,*^{1,*3} N. Nakatsuka,*^{1,*14} M. Niikura,*^{1,*3}
C. Nita,*¹⁵ C. Nobs,*⁶ L. Olivier,*¹¹ Z. Patel,*⁷ N. Paul,*^{1,*2} Zs. Podolyak,*⁷ J.-Y. Roussé,*^{1,*2} M. Rudigier,*⁷
T. Saito,*^{1,*3} H. Sakurai,*^{1,*3} T. Uccele,*¹ V. Vocucro,*¹² V. Wornor,*⁹ K. Wimmer,*^{1,*3} Z. Yu,*¹³ and

D. Steppenbeck,^{*1} R. Taniuchi,^{*1,*3} T. Uesaka,^{*1} V. Vaquero,^{*12} V. Werner,^{*9} K. Wimmer,^{*1,*3} Z. Xu,^{*13} and

the SEASTAR Collaboration

Within the second SEASTAR (Shell Evolution And Search for Two-plus energies At the RIBF) campaign, nuclei "North-East" of the doubly-magic nucleus ⁷⁸Ni were studied during 9 days of beam time. The experiment was performed in May, 2015 using the DALI2 γ -ray spectrometer¹⁾ and the MINOS liquid hydrogen target system²). The set-up was employed at the F8 focus following the BigRIPS³ fragment separator and reaction products were identified with ZeroDegree^{3} . Specifically, in the second campaign 2_1^+ and 4_1^+ energies of 82,84 Zn, 86,88 Ge, 88,90,92,94 Se, 96,98,100 Kr, 110 Zr, and 112 Mo were measured with five different secondary beam settings via knockout reactions.

To produce the secondary beams of interest, a $^{238}\mathrm{U}$ primary beam was accelerated to 345 MeV/nucleon and impinged on a 3-mm thick Be target at the entrance of BigRIPS. The primary beam intensity was about 30 particle-nA. In the five employed settings, BigRIPS was tuned for beam cocktails focusing on 85 Ga, 89 As, 95 Br, 101 Rb, and 111 Nb ions to enable (p, 2p) and other reactions to populate the 2^+_1 and 4_1^+ states. The particle identification was obtained by the $B\rho$ - ΔE -TOF method, employing standard BigRIPS/ZeroDegree detectors. In front of the 100-mmlong MINOS target, beam energies were around 260-270 MeV/nucleon, and total intensities in the order of several kHz. At the end of ZeroDegree, the ions were stopped in the center of the EURICA spectrometer⁴) to search for new isomeric decays.

An example for the quality of the Doppler corrected

- *3 Department of Physics, The University of Tokyo
- *4 GSI Helmholtzzentrum Darmstadt
- *5 Institute of Nuclear Physics, University of Cologne
- *6 School of Computing Engineering and Mathematics, University of Brighton *7
- Department of Physics, University of Surrey
- *8 INST Hanoi
- *9 Institut für Kernphysik, TU Darmstadt
- *10Institute of Modern Physics, Chinese Academy of Sciences *11
- IPN Orsay
- *12Instituto de Estructura de la Materia, CSIC
- $^{\ast 13}$ Department of Physics, The University of Hong Kong
- *¹⁴ Department of Physics, Kyoto University
- *15 IFIN-HH

Fig. 1. Doppler-corrected spectrum of 92 Se following 1p1nknockout reactions from a ⁹⁴Br secondary beam. The spectrum has been fitted with a double-exponential background (blue dotted) and simulated response functions (green dashed).

spectra obtained from DALI2 after reconstructing the vertex position with MINOS is given in Fig. 1 for 92 Se following 1p1n-knockout reactions. For this nucleus, an isomeric state was previously observed⁵⁾. However, the $E(2_1^+)$ could not be assigned. Conversely, the 539keV transition in the in-beam spectrum clearly possesses the highest intensity, and therefore must be the $2^+_1 \rightarrow 0^+_{\sigma s}$ transition. Several other transitions were observed and confirmed in the isomer spectrum of EU-RICA. In total, data were collected for about 6.5 days, while secondary beam production and user tuning took about 2.5 days for the five applied settings. All 2^+_1 and 4_1^+ energies of interest were observed. Currently, the data and many by-products are under analysis by several groups affiliated to the SEASTAR collaboration.

References

- 1) S. Takeuchi et al.: Nucl. Instr. Meth. A 763, 596 (2014).
- 2) A. Obertelli et al.: Eur. Phys. J. A 50, 8 (2014).
- 3) T. Kubo et al.: Prog. Theor. Exp. Phys. 2012, 03C003.
- 4) P.-A. Söderström et al.: Nucl. Instr. Meth. B 317, 649 (2013).
- 5) D. Kameda et al.: Phys. Rev. C 86, 054319 (2012).

^{*1} **RIKEN** Nishina Center

^{*2} CEA Saclay