Study of neutron-rich ¹⁴²Xe using β -decay spectroscopy

A. Yagi,^{*1,*2} H. Kanaoka,^{*1,*2} A. Odahara,^{*1} R. Lozeva,^{*3} C.-B. Moon,^{*4} H. Nishibata,^{*1,*2} T. Shimoda,^{*1} P. Lee,^{*5} R. Daido,^{*1,*2} Y. Fang,^{*1,*2} S. Nishimura,^{*2} P. Doornenbal,^{*2} G. Lorusso,^{*2} P.-A. Söderström,^{*2} T. Sumikama,^{*2} H. Watanabe,^{*6} T. Isobe,^{*2} H. Baba,^{*2} H. Sakurai,^{*7,*2} F. Browne,^{*8,*2} Z. Patel,^{*9,*2} S. Rice,^{*9,*2} L. Sinclair,^{*10,*2} J. Wu,^{*11,*2} Z.Y. Xu,^{*12} R. Yokoyama,^{*13} T. Kubo,^{*2} N. Inabe,^{*2} H. Suzuki,^{*2} N. Fukuda,^{*2} D. Kameda,^{*2} H. Takeda,^{*2} D.S. Ahn,^{*2} D. Murai,^{*14} F.L. Bello Garrote,^{*15} J.M. Daugas,^{*16} F. Didierjean,^{*3} E. Ideguchi,^{*17} T. Ishigaki,^{*1,*2} H.S. Jung,^{*18} T. Komatsubara,^{*19} Y.K. Kwon,^{*19}

C.S. Lee,^{*5} S. Morimoto,^{*1,*2} M. Niikura,^{*7} I. Nishizuka,^{*20} and K. Tshoo^{*19}

Study of neutron-rich ${}_{54}$ Xe isotopes with N > 82 is very important for understanding shape evolution from spherical to prolate shapes for nuclei in the mass region beyond the doubly-magic ¹³²Sn nucleus. In particular, the N=88 nucleus of ¹⁴²Xe is expected to have octupole collectivity in low spin region, because the $^{144}_{56}$ Ba nucleus (N=88) is well known for having the large octupole deformation¹). In this work, to reveal various nuclear structures of ¹⁴²Xe, the low-spin states in ¹⁴²Xe were investigated using β -decay spectroscopy of 142 I (Z=53).

Neutron-rich ¹⁴²I was produced by in-flight fission of a ²³⁸U beam at the RI Beam Factory (RIBF) in RIKEN. Particle identification for the fission fragments was performed based on the TOF- $B\rho$ - ΔE method using the BigRIPS and the ZeroDegree spectrometer²⁾. Nuclei were implanted in the 5 double-sided Si-strip detectors (WAS3ABi³⁾) at F11. Beta rays and γ rays were measured using the WAS3ABi and the EURICA array consisting of 12 Cluster-type Ge detectors³), respectively. In order to measure the half-life of the excited states in the time range from a few hundred picoseconds to a few nanoseconds, a fast timing detector system, which consists of 18 LaBr₃ detectors for γ rays and 2 plastic scintillators for β rays, was installed⁴).

Figure 1 shows the decay curve obtained by the time difference between the implantation of 142 I and the detection of β rays in WAS3ABi gated on the known 287keV γ rays $(2^+ \rightarrow 0^+)$ of ¹⁴²Xe⁵⁾. The half-life of the β decay of ¹⁴²I was determined to be 229(3) ms, which

- *1 Department of Physics, Osaka University
- *2**BIKEN** Nishina Center
- *3 IPHC/CNRS and University of Strasbourg
- *4Department of Display Engineering, Hoseo University
- *5Department of Physics, Chung-Ang University
- *6 Department of Physics, Beihang University
- *7 Department of Physics, University of Tokyo
- *8 CEM, University of Brighton
- *9 Department of Physics, University of Surry
- *10Department of Physics, University of York
- *11Department of Physics, Peking University
- $^{\ast 12}$ Hong Kong University
- *13CNS, University of Tokyo
- *14 Department of Physics, Rikkyo University
- *15 Department of Physics, University of Oslo
- *16 CEA/DAM
- *17 RCNP, Osaka University
- *¹⁸ Department of Physics, University of Notre Dame
- *19 IBS
- *²⁰ Department of Physics, Tohoku University

Fig. 1. Decay curve of the β decay gated on the 287-keV γ ray in ¹⁴²Xe.

was more accurate than the value of 222(12) ms in Ref. 6. Figure 2 shows the energy spectrum of γ -rays emitted after the β decay of $^{142}\mathrm{I}.$ Three known transitions in ¹⁴²Xe are clearly observed with energies of 287, 403, and 971 keV. The B(E2) value of 0.6(3) e^2b^2 determined from the half-life of the 2^+_1 state, which was obtained as 0.22(9) ns by using the fast timing system, is in good agreement with the one obtained by Coulomb-excitation measurement of $0.7(1) e^2 b^2$ in Ref. 7. The deformation parameter β_2 was deduced to be 0.16(3) using the B(E2) value in this work. This indicates that the nucleus ¹⁴²Xe has a small prolate shape. The decay scheme after the β decay of ¹⁴²I was newly constructed in this work with 36 levels up to an excitation energy of 3.2 MeV. Two levels in this new decay scheme were assigned as candidates of the (1^{-}) and (3^{-}) states which are members of the $K=0^{-}$ octupole band, populated in high spin region by the spontaneous fission of ²⁴⁸Cm in Ref. 5. A detailed analysis is in progress.

Fig. 2. Energy spectrum of γ -rays emitted after the β decay of ¹⁴²I. Peaks with closed circles indicate newly observed γ rays in ¹⁴²Xe.

References

- 1) W. Phillips et al., Phys. Rev. Lett. 57, 3257 (1986).
- 2) N. Fukuda et al., Nucl. Instrum. Methods Phys. Res. B **317**, 323 (2013).
- 3) P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. B 317, 649 (2013).
- 4) P.-A. Söderström et al., JPS Conf. Proc. 1, 013046 (2014).
- 5) W. Urban et al., Eur. Phys. J. A 16, 303 (2003).
- 6) R. Kessler et al., GSI 2006-1, 154 (2006).
- 7) T. Kröll et al., Eur. Phys. J. A 150, 127 (2007).