Study of neutron-rich ${ }^{142}$ Xe using $\boldsymbol{\beta}$-decay spectroscopy

A. Yagi, ${ }^{* 1, * 2}$ H. Kanaoka, ${ }^{* 1, * 2}$ A. Odahara, ${ }^{* 1}$ R. Lozeva, ${ }^{* 3}$ C.-B. Moon, ${ }^{* 4}$ H. Nishibata, ${ }^{* 1, * 2}$ T. Shimoda, ${ }^{* 1}$ P. Lee, ${ }^{* 5}$ R. Daido, ${ }^{* 1, * 2}$ Y. Fang, ${ }^{* 1, * 2}$ S. Nishimura, ${ }^{* 2}$ P. Doornenbal, ${ }^{* 2}$ G. Lorusso, ${ }^{* 2}$ P.-A. Söderström, ${ }^{* 2}$ T. Sumikama, ${ }^{* 2}$ H. Watanabe, ${ }^{* 6}$ T. Isobe, ${ }^{* 2}$ H. Baba, ${ }^{* 2}$ H. Sakurai, ${ }^{* 7, * 2}$ F. Browne, ${ }^{* 8, * 2}$ Z. Patel, ${ }^{* 9, * 2}$ S. Rice, ${ }^{* 9, * 2}$ L. Sinclair, ${ }^{* 10, * 2}$ J. Wu, ${ }^{* 11, * 2}$ Z.Y. Xu, ${ }^{* 12}$ R. Yokoyama, ${ }^{* 13}$ T. Kubo, ${ }^{* 2}$ N. Inabe, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ D. Kameda, ${ }^{* 2}$ H. Takeda, ${ }^{* 2}$ D.S. Ahn, ${ }^{* 2}$ D. Murai, ${ }^{* 14}$ F.L. Bello Garrote, ${ }^{* 15}$ J.M. Daugas, ${ }^{* 16}$ F. Didierjean, ${ }^{* 3}$ E. Ideguchi, ${ }^{* 17}$ T. Ishigaki, ${ }^{* 1, * 2}$ H.S. Jung, ${ }^{* 18}$ T. Komatsubara, ${ }^{* 19}$ Y.K. Kwon, ${ }^{* 19}$ C.S. Lee, ${ }^{* 5}$ S. Morimoto, ${ }^{* 1, * 2}$ M. Niikura, ${ }^{* 7}$ I. Nishizuka, ${ }^{* 20}$ and K. Tshoo* ${ }^{* 19}$

Study of neutron-rich ${ }_{54} \mathrm{Xe}$ isotopes with $N>82$ is very important for understanding shape evolution from spherical to prolate shapes for nuclei in the mass region beyond the doubly-magic ${ }^{132} \mathrm{Sn}$ nucleus. In particular, the $N=88$ nucleus of ${ }^{142} \mathrm{Xe}$ is expected to have octupole collectivity in low spin region, because the ${ }_{56}^{144} \mathrm{Ba}$ nucleus $(N=88)$ is well known for having the large octupole deformation ${ }^{1)}$. In this work, to reveal various nuclear structures of ${ }^{142} \mathrm{Xe}$, the low-spin states in ${ }^{142}$ Xe were investigated using β-decay spectroscopy of ${ }^{142} \mathrm{I}(Z=53)$.

Neutron-rich ${ }^{142}$ I was produced by in-flight fission of a ${ }^{238} \mathrm{U}$ beam at the RI Beam Factory (RIBF) in RIKEN. Particle identification for the fission fragments was performed based on the TOF- $B \rho-\Delta E$ method using the BigRIPS and the ZeroDegree spectrometer ${ }^{2)}$. Nuclei were implanted in the 5 double-sided Si-strip detectors ($\mathrm{WAS} 3 \mathrm{ABi}^{3}$)) at F11. Beta rays and γ rays were measured using the WAS3ABi and the EURICA array consisting of 12 Cluster-type Ge detectors ${ }^{3)}$, respectively. In order to measure the half-life of the excited states in the time range from a few hundred picoseconds to a few nanoseconds, a fast timing detector system, which consists of $18 \mathrm{LaBr}_{3}$ detectors for γ rays and 2 plastic scintillators for β rays, was installed ${ }^{4)}$.

Figure 1 shows the decay curve obtained by the time difference between the implantation of ${ }^{142} \mathrm{I}$ and the detection of β rays in WAS3ABi gated on the known 287$\mathrm{keV} \gamma$ rays $\left(2^{+} \rightarrow 0^{+}\right)$of $\left.{ }^{142} \mathrm{Xe}^{5}\right)$. The half-life of the β decay of ${ }^{142}$ I was determined to be $229(3) \mathrm{ms}$, which

[^0]

Fig. 1. Decay curve of the β decay gated on the $287-\mathrm{keV} \gamma$ ray in ${ }^{142} \mathrm{Xe}$.
was more accurate than the value of $222(12) \mathrm{ms}$ in Ref. 6. Figure 2 shows the energy spectrum of γ-rays emitted after the β decay of ${ }^{142} \mathrm{I}$. Three known transitions in ${ }^{142} \mathrm{Xe}$ are clearly observed with energies of 287,403 , and 971 keV . The $B(\mathrm{E} 2)$ value of $0.6(3) \mathrm{e}^{2} \mathrm{~b}^{2}$ determined from the half-life of the 2_{1}^{+}state, which was obtained as $0.22(9) \mathrm{ns}$ by using the fast timing system, is in good agreement with the one obtained by Coulomb-excitation measurement of $0.7(1) \mathrm{e}^{2} \mathrm{~b}^{2}$ in Ref. 7. The deformation parameter β_{2} was deduced to be $0.16(3)$ using the $B($ E2 $)$ value in this work. This indicates that the nucleus ${ }^{142} \mathrm{Xe}$ has a small prolate shape. The decay scheme after the β decay of ${ }^{142}$ I was newly constructed in this work with 36 levels up to an excitation energy of 3.2 MeV . Two levels in this new decay scheme were assigned as candidates of the $\left(1^{-}\right)$and $\left(3^{-}\right)$states which are members of the $K=0^{-}$ octupole band, populated in high spin region by the spontaneous fission of ${ }^{248} \mathrm{Cm}$ in Ref. 5. A detailed analysis is in progress.

Fig. 2. Energy spectrum of γ-rays emitted after the β decay of ${ }^{142}$ I. Peaks with closed circles indicate newly observed γ rays in ${ }^{142} \mathrm{Xe}$.
References

1) W. Phillips et al., Phys. Rev. Lett. 57, 3257 (1986).
2) N. Fukuda et al., Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013).
3) P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. B 317, 649 (2013).
4) P.-A. Söderström et al., JPS Conf. Proc. 1, 013046 (2014).
5) W. Urban et al., Eur. Phys. J. A 16, 303 (2003).
6) R. Kessler et al., GSI 2006-1, 154 (2006).
7) T. Kröll et al., Eur. Phys. J. A 150, 127 (2007).

[^0]: *1 Department of Physics, Osaka University
 *2 RIKEN Nishina Center
 *3 IPHC/CNRS and University of Strasbourg
 *4 Department of Display Engineering, Hoseo University
 *5 Department of Physics, Chung-Ang University
 *6 Department of Physics, Beihang University
 *7 Department of Physics, University of Tokyo
 *8 CEM, University of Brighton
 *9 Department of Physics, University of Surry
 *10 Department of Physics, University of York
 *11 Department of Physics, Peking University
 *12 Hong Kong University
 *13 CNS, University of Tokyo
 *14 Department of Physics, Rikkyo University
 *15 Department of Physics, University of Oslo
 *16 CEA/DAM
 *17 RCNP, Osaka University
 *18 Department of Physics, University of Notre Dame
 *19 IBS
 *20 Department of Physics, Tohoku University

