D. Lubos,^{*1,*2} J. Park,^{*3,*4} N. Warr,^{*5} K. Moschner,^{*5} M. Lewitowicz,^{*6} R. Gernhäuser,^{*1} R. Krücken,^{*3,*4}
S. Nishimura,^{*2} H. Sakurai,^{*7} G. Lorusso,^{*2} J. Wu,^{*2} Z. Y. Xu,^{*7,*2} H. Baba,^{*2} B. Blank,^{*8} A. Blazhev,^{*5}
P. Boutachkov,^{*9} F. Browne,^{*10,*2} I. Celikovic,^{*6} P. Doornenbal,^{*2} T. Faestermann,^{*1} Y. Fang,^{*11,*2}
G. de France,^{*3} N. Goel,^{*9} M. Gorska,^{*9} S. Ilieva,^{*12} T. Isobe,^{*2} A. Jungclaus,^{*13} G. D. Kim,^{*14} Y.-K. Kim,^{*14}

I. Kojouharov,^{*9} M. Kowalska,^{*15} N. Kurz,^{*9} Z. Li,^{*16} I. Nishizuka,^{*17,*2} Z. Patel,^{*18,*2} M. M. Rajabali,^{*19}

S. Rice,^{*18,*2} H. Schaffner,^{*9} L. Sinclair,^{*20,*2} P.-A. Söderström,^{*2} K. Steiger,^{*1} T. Sumikama,^{*17}

H. Watanabe, $*^{21}$ and Z. Wang $*^{3}$

The heaviest self-conjugate doubly magic nucleus ¹⁰⁰Sn is known to have the largest Gamow-Teller decay strength B(GT) of all nuclei.¹⁾ A precise determination of B(GT) is needed to test the robustness of the N = Z = 50 shell closure suggested by shell model calculations. This implies the importance of measuring the β -decay endpoint energy Q_{β} of ¹⁰⁰Sn with better precision. An experiment to study the superallowed Gamow-Teller decay of ¹⁰⁰Sn was performed at the RIBF facility of RIKEN Nishina Center in June 2013. ¹⁰⁰Sn and a large cocktail of neutrondeficient isotopes down to N = Z - 2 were produced by fragmenting a 345 MeV/u ¹²⁴Xe beam with intensities up to 36 pnA on a 4 mm ⁹Be target. The nuclei of interest were separated and identified through BigRIPS and the ZeroDegree spectrometer, before being implanted into one of the three double-sided silicon strip detectors (DSSD) of WAS3ABi. The DSSDs were complemented by 10 single-sided silicon strip detectors in a closed-stack geometry for Q_{β} measurement at maximum efficiency in the downstream direction. WAS3ABi was surrounded by 84 HPGe and 18 LaBr₃ detectors of the γ -ray spectrometer EURICA. Thus, gating on the γ -ray transitions of the daughter nuclei results in a high purity of the β^+ energy spectrum. The accurate measurement of the total β^+ energy using WAS3ABi was hindered by processes such as bremsstrahlung, annihilation-in-flight, and particle escape. Hence, neither the measured endpoint nor the experimental distribution of the measured ener-

*2 **RIKEN** Nishina Center

- *3 TRIUMF
- *4University of British Columbia
- *5 Institut für Kernphysik, Universität zu Köln
- *6 GANIL
- *7 Department of Physics, University of Tokyo
- *8 CENBG
- *9 GSI Darmstadt
- *10 School of Comp., Eng. and Maths., Brighton University
- *11Department of Physics, Osaka University *12
- Institut für Kernphysik, TU Darmstadt
- *13 IEM-CSIC
- *14 Institute for Basic Science
- *15CERN
- *16School of Physics, Peking University
- *17 Department of Physics, Tohoku University
- *¹⁸ Department of Physics, Surrey University
- *¹⁹ Department of Physics, Tennessee Tech University
- $^{\ast 20}$ Department of Physics, University of York
- *²¹ Department of Physics, Beihang University

Fig. 1. Complete energy deposit in the experiment (black) of decay products after the implantation of ⁹⁸Cd nuclei coincident with γ -rays at $E_{\gamma} = 1176 \pm 2$ keV and 30 simulated spectra (red) of positrons at Q_{β} = 2737 keV. The arrow denotes the range of comparison. A parabolic fit yields $\chi^2_{\rm min}$ at $Q_\beta = 2750 \pm 36$ keV.

gies could directly be used to determine the Q_{β} -value. Therefore, Geant4 simulations of the WAS3ABi geometry and physics processes were used to study the detector response and determine the endpoint $energy^{2}$. For each trial, Q_{β} was used as the input parameter and positrons were generated in the WAS3ABi geometry to form a simulated energy spectrum. Then, it was compared to the experimental energy spectrum by a χ^2 -test. The experimental Q_β resulted in the mini-mum χ^2_{\min} . The uncertainty of χ^2 originating in the simulations is obtained by performing 30 simulations for each trial energy (see Fig. 1). In order to verify this method, the β -decay of ⁹⁸Cd into the 1691-keV state in ⁹⁸Ag³) was studied (see Fig. 1). The minimum $\chi^2_{\rm min}$ is obtained by $Q_\beta = 2750 \pm 36$ keV, which agrees well with the literature value of 2717(40) keV⁴). Analysis for Q_{β} of ¹⁰⁰Sn is ongoing, and it will be finalized soon.

References

- 1) C. B. Hinke et al., Nature 486, 341 (2012).
- 2) N. Warr et al., EPJ Web of Conferences 93, 07008 (2015).
- 3) B. Singh, Z. Hu, Nucl. Data Sheets 98, 335 (2003).
- 4) N. Wang et al., Chinese Physics C 36, 1603 (2012).