Discovery of a μs isomer of ⁷⁶Co[†]

P.-A. Söderström,^{*1} S. Nishimura,^{*1} Z. Y. Xu,^{*2} K. Sieja,^{*3} V. Werner,^{*4,*5} P. Doornenbal,^{*1} G. Lorusso,^{*1} F. Browne,^{*1,*6} G. Gey,^{*1,*7,*8} H. S. Jung,^{*9} T. Sumikama,^{*10} J. Taprogge,^{*1,*11,*12} Zs. Vajta,^{*1,*13} H. Watanabe,^{*1,*14} J. Wu,^{*1,*15} H. Baba,^{*1} Zs. Dombradi,^{*13} S. Franchoo,^{*16} T. Isobe,^{*1} P. R. John,^{*17,*18} Y.-K. Kim,^{*19} I. Kojouharov,^{*20} N. Kurz,^{*20} Y. K. Kwon,^{*19} Z. Li,^{*15} I. Matea,^{*16} K. Matsui,^{*2}

G. Martnez-Pinedo,^{*5} D. Mengoni,^{*17,*18} P. Morfouace,^{*16} D. R. Napoli,^{*21} M. Niikura,^{*2} H. Nishibata,^{*22} A. Odahara,^{*22} K. Ogawa,^{*1} N. Pietralla,^{*5} E. Şahin,^{*23} H. Sakurai,^{*1,*2} H. Schaffner,^{*20} D. Sohler,^{*13}

I. G. Stefan,^{*16} D. Suzuki,^{*16} R. Taniuchi,^{*2} A. Yagi,^{*22} and K. Yoshinaga^{*24}

Changes in nuclear shell structure far from stability are largely associated with the monopole component of the proton-neutron interaction. Thus, there is a large ongoing experimental effort aiming to investigate how these shell and sub-shell closures evolve for very exotic nuclei at and below ⁷⁸Ni. The study of single neutron and proton particle and hole states outside ⁷⁸Ni is one important way to gain information on this topic. In a recent paper new experimental results on ⁷⁶Co, one neutron-hole and one proton-hole in ⁷⁸Ni, were presented. Due to the purity of the excited states, this is a unique case to study the neutron-proton interaction in a region with sparse experimental information.

The ⁷⁶Co nuclei were produced by in-flight fission of a 345 MeV/u ²³⁸U beam on a 3 mm beryllium target and then separated using the BigRIPS fragment separator and the ZeroDegree spectrometer. At F11 the WAS3ABi¹⁾ silicon detector stack was used for implantation and β -decay correlation measurements and the EURICA spectrometer was used for measuring the energy and time of the γ rays. In total, approximately

- t Condensed from the article in Phys. Rev. C, Vol.92, 051305(R) (2015)
- *1 **RIKEN** Nishina Center
- *2 Department of Physics, University of Tokyo
- *3 Université de Strasbourg, IPHC
- *4Wright Nuclear Structure Laboratory, Yale University
- *5 Institut für Kernphysik, TU Darmstadt
- *6 School of Computing, Engineering and Mathematics, University of Brighton
- *7 LPSC, Université Grenoble-Alpes, CNRS/IN2P3
- *8 ILL
- *9 Department of Physics, Chung-Ang University
- Department of Physics, Tohoku University
- *11 Departamento de Física Teórica, Universidad Autónoma de Madrid
- $^{\ast 12}$ Instituto de Estructura de la Materia, CSIC
- ^{*13} Institute for Nuclear Research, Hungarian Academy of Sciences
- $^{\ast 14}\,$ School of Physics and Nuclear Energy Engineering, Beihang University
- *15School of Physics and State key Laboratory of Nuclear Physics and Technology, Peking University
- *¹⁶ Institut de Physique Nucléaire, CNRS-IN2P3
- $^{\ast 17}$ INFN Sezione di Padova
- *18 Dipartimento di Fisica e Astronomia, Università di Padova
- $^{\ast 19}$ Institute for Basic Science, Rare Isotope Science Project
- *²⁰ GSI
- *²¹ INFN, LNL
- *²² Department of Physics, Osaka University
- *²³ Department of Physics, University of Oslo
- *²⁴ Department of Physics, Tokyo University of Science

Fig. 1. Proposed experimental level scheme of ⁷⁶Co compared to shell model calculations using a modified LNPS interaction.

1000 ⁷⁶Co ions were implanted in WAS3ABi during 10 days of measurement.

In the experiment, two coincident γ rays of 192 and 446 keV from the decay of a $t_{1/2} = 3 \ \mu s$ isomeric state of ⁷⁶Co were observed. The decay of the isomer was assigned to an E1 transition with a reduced transition probability of $B(E1; 3^+ \rightarrow 2^-) = 1.79 \times 10^{-8}$ W.u. Shell model calculations carried out with an up-todate LNPS interaction^{2,3}) including monopole changes to assure the correct propagation of proton singleparticles energies showed the states to be about 70% pure structures of $\pi f_{7/2}^{-1} \otimes \nu g_{9/2}^{-1}$ or $\pi f_{7/2}^{-1} \otimes \nu p_{1/2}^{-1}$ hole configurations for negative and positive parity states, respectively. Thus, the relative $\nu g_{9/2}^{-1}$ and $\nu p_{1/2}^{-1}$ positions could be fine tuned by changing the strength of the $\pi f_{7/2}^{-1} \otimes \nu p_{1/2}^{-1}$ monopole. The results of these calculations are shown in Fig. 1.

Furthermore, a β decaying 8⁻ state was also observed in the data, consistent with the LNPS shell model calculations. These results will help constrain further developments of theoretical models in the $\pi f_{7/2} \otimes \nu g_{9/2}$ region between $^{60}\mathrm{Ca}$ and $^{78}\mathrm{Ni},$ where scarce experimental data are available.

References

- 1) S. Nishimura et al. RIKEN Accel. Prog. Rep. 46, 182 (2013)
- 2) K. Sieja and F. Nowacki Phys. Rev. C 85, 051301 (2012).
- 3) S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja Phys. Rev. C 82, 054301 (2010).