Long-range correlation of V^{0} particles in $p-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$ 5.02 TeV with the ALICE detector

Y. Sekiguchi, ${ }^{* 1, * 2}$ H. Hamagaki,*2 and T. Gunji*2

Measuring correlations in particle production as a function of the azimuthal angular space and rapidity space is very useful for investigating particle production in high-energy nucleus-nucleus collisions. The long-range correlations in the rapidity space in nearside angular pairs of dihadron correlations were first observed in $\mathrm{Au}-\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ at RHIC $^{1,2)}$. This long-range correlations are derived from the collective expansion of the initial geometry fluctuations. Unexpectedly, a similar structure has also been observed in high-multiplicity $p p$ collisions at $\sqrt{s_{N N}}=7 \mathrm{TeV}$ by the CMS experiment ${ }^{3)}$. It is very interesting to study the correlation in $p-\mathrm{Pb}$ collisions because the initial gluon density and magnitude of the collective expansion are very different from those in other collision systems. The azimuthal anisotropy parameter v_{2} of K, π, and p shows mass ordering at low transverse momentum (p_{T}) and the trend is similar to $\mathrm{Pb}-\mathrm{Pb}$ collisions ${ }^{4}$. The mass ordering is a characteristic feature of collective expansion. This analysis aims to further explore the partonic collectivity by extracting v_{2} of K_{s}^{0} and Λ in p Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with the ALICE detector. The correlations between the unidentified charged hadrons as trigger particle and K_{s}^{0} and $\Lambda(\bar{\Lambda})$ as associated particles at $|\eta|<0.8$ are measured as a function of the azimuthal angle difference $\Delta \phi$ and pseudo-rapidity difference $\Delta \eta . \mathrm{K}_{s}^{0}$ and Λ decay into $\pi^{+}+\pi^{-}$and $p^{+}+\pi^{-}$with a characteristic decay pattern, called V^{0}. Topological cuts are required to reduce the combinatorial background. The correlation function as a function of $\Delta \eta$ and $\Delta \phi$ between two charged particles is defined as $\frac{1}{N_{\text {trig }}} \frac{\mathrm{d}^{2} N_{\text {asso }}}{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}=\frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$, where $N_{\text {trig }}$ is the total number of triggered particles in the event class and p_{T} interval, the signal distribution $S(\Delta \eta, \Delta \phi)=\frac{1}{N_{\text {trig }}} \frac{\mathrm{d}^{2} N_{\text {same }}}{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}$ is the associated yield per trigger particle from the same event, and the background distribution $B(\Delta \eta, \Delta \phi)=\alpha \frac{\mathrm{d}^{2} \mathrm{~N}_{\text {mixed }}}{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}$ accounts for pair acceptance and pair efficiency. B is constructed by taking the correlations between the trigger particles in one event and the associated particles in other events in the same event class. The α factor is chosen so that it is unity at $\Delta \eta \sim 0$ because the acceptance is flat along $\Delta \phi$. This correlation function is studied for different p_{T} intervals and different event classes. The correlation function in peripheral collisions is subtracted from that in central collisions to remove the auto-correlations from jets. Figure 1 shows the projec-

[^0]tion of the subtracted correlation functions onto $\Delta \phi$. To quantify azimuthal anisotropy $\left(v_{2}\right)$, the Fourier coefficients are extracted by fitting with the function $a_{0}+2 a_{1} \cos (\Delta \phi)+2 a_{2} \cos (2 \Delta \phi)$. The v_{n} coefficient can be obtained as $v_{\mathrm{n}}^{\mathrm{K}_{\mathrm{s}}^{0}, \Lambda}=V_{\mathrm{n}}^{\mathrm{K}_{\mathrm{s}}^{0}, \Lambda} / \sqrt{V_{\mathrm{n}}^{\mathrm{h}-\mathrm{h}}}$, where $V_{n}^{i}=a_{\mathrm{n}}^{\mathrm{i}} /\left(\mathrm{a}_{0}^{\mathrm{i}}+\mathrm{b}^{\mathrm{i}}\right)$, in which i is the index of $\mathrm{h}-\mathrm{h}$ or h -V0 pairs (h denotes undefined hadrons) and b is the baseline determined by averaging over $1.2<|\Delta \eta|<1.6$ on the near side of the $60-100 \%$ event class. Figure 2 shows the extracted v_{2} coefficient for K_{s}^{0} and $\Lambda(\bar{\Lambda})$ compared to p and K as a function of p_{T}. Mass ordering between the v_{2} of K_{s}^{0} and $\Lambda(\bar{\Lambda})$ as well as the kaon and proton is observed.

Fig. 1. Projection of the subtracted correlation functions of the associated K_{s}^{0} (top) and Λ (bottom) yield per trigger particle with $1.5<p_{\mathrm{T}, \text { trig }}, p_{\mathrm{T}, \text { asso }}<2.5 \mathrm{GeV}$.

Fig. 2. v_{2} of $\mathrm{K}_{s}^{0}, \Lambda(\bar{\Lambda})$ compared with one of kaon and proton. Error bars and shaded bands show statistical uncertainties and systematic, respectively.

References

1) STAR Collaboration, Phys. Rev. C80 064912 (2009)
2) PHOBOS Collaboration, Phys. Rev. Lett. 104 062301(2010)
3) CMS Collaboration, JHEP 09 091(2010)
4) ALICE Collaboration, Phys. Lett. B, $\mathbf{7 2 6}$ 164177(2013)

[^0]: *1 RIKEN Nishina Center
 *2 Center for Nuclear Study, the University of Tokyo

