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The top-on-top model with moments of inertia
(MoI) dependent on angular-momentum (I) works
quite well in describing triaxial strongly deformed
(TSD) bands in odd-mass nuclei.1–3) In this paper, the
top-on-top model is extended to the tops-on-top model
for an odd-odd nucleus 164Lu, in which one proton and
one neutron in each single-j orbital are coupled to the
triaxial rotor.

Both positive- and negative- parity TSD bands in
164Lu are well reproduced by taking account of at-
tenuation factors in the Coriolis interaction, which in-
cludes the effect of the partially filled single-j shell. In
order to observe the effect of the attenuation factor,
we compared numerical results with and without the
attenuation factor and confirmed its importance for
the excitation energies relative to the reference, i.e.,
E∗ − aI(I + 1) with a = 0.0075 MeV.4,5)

For a pure-rotor case without single-particle poten-
tials, an explicit algebraic formula for the TSD band
levels is obtained. The level is classified by three quan-
tum numbers (nα, nβ, nγ), where nα is related to the
rotor wobbling quantum number, and nβ and nγ to the
precession quantum numbers for a proton and a neu-
tron. Under the condition of D2-invariance,6) three
quantum numbers take limited integers depending on
the value of I − j1 − j2 and nα − nβ − nγ . As an
example, we assume j1 = j2 = 13/2, and compare
the energy eigenvalues from this boson model with the
result obtained from the exact diagonalization of the
rotor Hamiltonian in Fig. 1 for odd number I where
I − j1 − j2 is even. In this case nβ and nγ appear as
the combination np = nβ + nγ . The yrast has quan-
tum numbers (0, 0) and the yrare (0, 2)3. On the other
hand, for even number I where I − j1 − j2 is odd, the
yrast has quantum numbers (1, 0) and the yrare (2, 1)2.
The boson model reproduces the exact results in good
accuracy.

It is easy to derive the stability condition for a pure-
rotor case. We found that there is no wobbling around
the axis with the intermediate MoI. The wobbling mo-
tion exists only around the axis with the maximum or
minimum MoI, which agrees with the result in classical
mechanics.7) Consequently, we can state that there is
no stable rotation around the axis with the intermedi-
ate MoI, and that stable rotational motion exists only
around the axis with the maximum or minimum MoI.

The difference in quantum numbers between the
yrast and yrare TSD bands in 164Lu, in which single-
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Fig. 1. Comparison of the energy levels of odd spin I

(13 ≤ I ≤ 31) between the boson model (solid lines) and

the exact result (dashed lines). Quantum numbers and

degeneracy of levels (np + 1) are given by (nα, np)np+1

below each rotational band. Angular momentum values

are assigned to the lowest two levels and the highest

level in the right-hand side of each band.

particle potentials are included, is confirmed by direct
estimation of spin alignments. It is confirmed that the
yrast TSD band with even I−j1−j2 has quantum num-
bers (nα, nβ, nγ)=(0,0,0), while the yrare TSD band
with odd I − j1 − j2 has (1,0,0).

The electromagnetic transition rates of B(M1) are
reduced by a factor of 1/20 because the signs of g-
factors of a proton and a neutron are different in com-
parison with the odd-A case, while the electromagnetic
transition rates of B(E2) are in the same order but
reduced by a factor of 1/2. These reductions of elec-
tromagnetic transition rates will make the observation
of TSD bands in even-even nuclei difficult.
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Theoretical analysis of 132Xe by generator coordinate method

N. Yoshinaga,∗1,∗3 K. Higashiyama,∗2 and E. Teruya ∗1

Xe, Ba, and Ce nuclei in the mass A ∼ 130 region ex-
hibit γ-instability in low-lying states, which is charac-
terized by energy staggering of the even-odd spin states
in the quasi-γ band and by some forbidden transition
rates between the yrast and quasi-γ bands. The en-
ergy levels and decay properties of the low-lying states
were discussed in the framework of the interacting bo-
son model1), where quadrupole collective excitations
are described in terms of the angular momenta zero
(s) and two (d) bosons.
Another characteristic feature of even-even nuclei

is the irregular level sequence in the yrast band, i.e.,
the backbending phenomenon, which is interpreted as
band crossing between the ground-state band and the
s band originating from the alignment of two neutrons
in 0h11/2 orbitals. Sudden decreases in the level spac-
ing and the E2 transition rates are observed around the
states of spin 10. Recently, full-fledged shell-model cal-
culations have been performed for the even-even, odd-
mass and doubly-odd nuclei in this mass region2). The
shell-model calculations well reproduce the experimen-
tal energy levels and electromagnetic transition rates.
In the present study, we apply the quantum-number-

projected generator coordinate method (GCM) to
132Xe under the same interaction used in the previ-
ous shell model studies2). All the five orbitals, 0g7/2,
1d5/2, 1d3/2, 0h11/2 and 2s1/2, in the major shell of
50 ≤ N(Z) ≤ 82 are considered, and valence neutrons
(protons) are treated as holes (particles).
In the present scheme, spins of the neutron and pro-

ton systems (Iν and Iπ) are projected separately, and
the total spin is constructed by angular momentum
coupling. To generate functions for the GCM in a
neutron or proton system (τ = ν or π), we employ
the Nilsson BCS intrinsic states

��Φτ (β, γ)
⟩
, where β

and γ indicate axial and triaxial quadrupole deforma-
tions, respectively. The ρth GCM wave function with
angular momentum Iτ in neutron or proton space is
given by

��Ψ(τ)
IτMτρ

⟩

=
∑
i

Iτ∑
Kτ=−Iτ

FIτ i
Kτρ

P̂ Iτ
MτKτ

P̂Nτ

��Φτ (βi, γi)
⟩
, (1)

where P̂ Iτ
MτKτ

is the spin projection operator, P̂Nτ is

the particle-number projection operator, FIτ i
Kτρ

is the
weight function to be determined by solving the Hill-
Wheeler equation, and i stands for a representative
point with deformation (β, γ). Then, the wave function
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Fig. 1. Comparison of the experimental energy levels

(expt.) with the shell-model (SM) results, those in the

triaxial GCM (triaxial), and those in the axial GCM

(axial).

for an even-even nucleus can be written as

��ΨIM (IνρIπσ)
⟩
=

[��Ψ(ν)
Iνρ

⟩
⊗

��Ψ(π)
Iπσ

⟩](I)
M

, (2)

where I is the total spin and M is its projection. GCM
calculations are carried out for two cases: (i) triax-
ial deformations (9 points) with β = 0.10, 0.20, 0.30,
γ = 10◦, 30◦, 50◦; (ii) only axial deformations (49
points) with β = 0.00, 0.02, 0.04, · · · , 0.48 and γ = 0◦,
60◦. In Fig. 1, experimental energy levels are compared
with the shell-model results, and those in the GCM.
In both cases of triaxial and axial deformations, the
GCM well reproduces the experimental energy levels
of the even-spin yrast band and those obtained by the
shell model. In the case of other excited states, the
GCM calculations performed by assuming triaxial de-
formation are in good agreement with the shell model
results, especially for the 2+2 , 3

+
1 , 4

+
2 , and 5+1 states,

which are members of the γ-band. However, energy
levels calculated by assuming only axial deformation
for the 3+1 , 5

+
1 , and 7+1 states are much higher than

those calculated using the shell model. Apparently,
the description of the 2+2 , 3

+
1 , 4

+
2 , and 5+1 states is not

satisfactory when assuming only the axially symmetric
shape. The triaxial components play an essential role
in the description of these states.
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