
Giant dipole resonance in highly excited nuclei†

N. Dinh Dang∗1

The present work summarizes the achievements of
the Phonon Damping Model (PDM)1) in the descrip-
tion of the the GDR width and shape at finite tem-
perature T and angular momentum J . The GDR pa-
rameters predicted by the PDM and experimentally
extracted are also used to calculate the shear viscosity
of finite hot nuclei.
The PDM’s Hamiltonian consists of the independent

single-particle (quasiparticle) field, GDR phonon field,
and the coupling between them. The Woods-Saxon
potentials at T = 0 are used to obtain the single-
particle energies ǫk. The GDR width Γ(T ) is a sum:
Γ(T ) = ΓQ+ΓT of the quantal width, ΓQ, and thermal
width, ΓT. In the presence of superfluid pairing, the
quantal and thermal widths are ΓQ = 2γQ(EGDR) =

2πF 2
1

∑
ph[u

(+)
ph ]2(1 − np − nh)δ[EGDR − Ep − Eh] ,

and ΓT = 2γT (EGDR) = 2πF 2
2

∑
s>s′ [v

(−)
ss′ ]

2(ns′ −

ns)δ[EGDR − Es + Es′ ] , where u
(+)
ph = upvh + uhvp,

v
(−)
ss′ = usus′ − vsvs′ (ss′ = pp′, hh′) with the co-
efficients of Bogolyubov’s transformation uk and vk,
quasiparticle energies Ek ≡

√
(ǫk − λ)2 +∆2, super-

fluid pairing gap ∆, and quasiparticle occupations
numbers nk = [exp(Ek/T )+1]−1. F1 is chosen so that
ΓQ at T = 0 is equal to GDR’s width at T = 0; F2 is
chosen so that, with varying T , the GDR energy EGDR

does not change significantly. EGDR is the solution of
EGDR − ωq − Pq(EGDR) = 0, where ωq is the energy
of the GDR phonon before the coupling between the
phonon and single-particle mean fields is switched on,
and Pq(ω) is the polarization operator owing to this
coupling. In numerical calculations the representation
δ(x) = limε→0 ε/[π(x

2 + ε2)] is used for the δ-function
with ǫ = 0.5 MeV.
In the verification of the condition for applying hy-

drodynamics to nuclear system, the quantum mechan-
ical uncertainty principle requires a finite viscosity for
any thermal fluid. It has been conjectured that the
ratio η/s of shear viscosity η to the entropy volume
density s is bounded at the lower end for all fluids,
namely the value η/s = h̄/(4πkB) is the universal
lower bound (KSS bound or unit). From the viewpoint
of collective theories, one of the fundamental explana-
tions for the giant resonance damping is the friction
term (or viscosity) of the neutron and proton fluids.
The exact expression for the shear viscosity η(T ) in
terms of the GDR’s parameters at zero and finite T

was obtained as η(T ) = η(0)[Γ(T )/Γ(0)]{EGDR(0)
2 +

[Γ(0)/2]2}/{EGDR(T )
2 + [Γ(T )/2]2}. The predictions
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Fig. 1. GDR width for 120Sn predicted by the PDM, phe-

nomenological thermal shape fluctuations (pTSFM),

adiabatic (AM), and Fermi liquid drop (FLDM) models

as functions of T in comparison with experimental data

in tin regions.
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Fig. 2. The ratio η/s as a function of T for nuclei in the

tin region. The gray areas are the PDM predictions by

using 0.6u ≤ η(0) ≤ 1.2u with u = 10−23 Mev s fm−3.

for the GDR width and the ratio η/s by the PDM,
pTSFM, AM, and FLDM for 120Sn are plotted as func-
tions of T in Figs. 1 and 2 in comparison with the em-
pirical results. The latter are extracted from the ex-
perimental systematics for GDR in tin region making
use this exact expression. It is seen that the predic-
tions by the PDM have the best overall agreement with
the empirical results. Based on these results and on
a model-independent estimation, it is concluded that
η/s for medium and heavy nuclei at T = 5 MeV is in
between (1.3 - 4.0) KSS units.
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Reentrance phenomenon of superfluid pairing in hot rotating nuclei

N. Quang Hung,∗1 N. Dinh Dang,∗2 B.K. Agrawal,∗3 V.M. Datar,∗4 A. Mitra,∗4 and D.R. Chakrabarty∗4

When a nucleus rotates (total angular momentum J

and/or rotational frequency ω are not zero), the nu-
cleon (proton and neutron) pairs located around the
Fermi surface will scatter to the empty levels nearby
and lead to the decreasing of pairing correlation. When
the J or ω is sufficiently high, i.e., equal to the critical
value Jc or ωc, the scattered nucleons completely block
the single-particle levels around the Fermi surface.
Consequently, pairing correlation disappears. How-
ever, when J is slightly higher than Jc (or ω ≥ ωc), the
increase of temperature T will relax the particles scat-
tered around the Fermi surface and causes some levels
become partially unoccupied, making them available
for scattered pairs. As a result, the pairing correla-
tion reappears at some critical value T1. As T goes
higher, e.g., at T2 > T1, the newly created pairs will
be eventually broken down again. This phenomenon
is called the pairing reentrance. The recently devel-
oped FTBCS1 theory that includes the effect due to
quasiparticle-number fluctuations in the pairing field
and angular momentum z projection at T �= 0 has
predicted the pairing reentrance effect in some realis-
tic nuclei1). The shell-model Monte Carlo calculations
have suggested that the pairing reentrance effect can
be observed in the nuclear level density in a form of
a local maximum at low T (or excitation energy E∗)
and high J (or ω). Recently, an enhancement of level
density of 104Pd at low E∗ and high J has been ex-
perimentally reported2). In this work we try to see
whether the enhancement observed in the extracted
level density of 104Pd is an experimental evidence of
pairing reentrance phenomenon in atomic nuclei.

The FTBCS1 equations at finite temperature and
angular momentum are derived based on the varia-
tional method to minimize the expectation value of the
pairing Hamiltonian H =

∑
k ǫk(a

†

+ka+k + a
†

−ka−k)−

G
∑

kk′ a
†

ka
†

−ka−k′ak′ − λN̂ − ωM̂ , in the grand-
canonical ensemble. This Hamiltonian describes a sys-
tem rotating about the symmetry axis, which is chosen
to coincide with its z component. The particle-number
operator N̂ and the z projection M̂ of the total angu-
lar momentum Ĵ (which coincides with M̂ for spheri-

cal nuclei) are defined as N̂ =
∑

k(a
†

+ka+k+a
†

−ka−k) ,

M̂ =
∑

k mk(a
†

+ka+k − a
†

−ka−k) , where a
†

±k(a±k) are
the creation (annihilation) operators of a particle in
the k-th deformed state, whereas ǫk, λ, and ω are re-
spectively the single-particle energies, chemical poten-
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Fig. 1. (Color online) Total level densities for 104Pd as

function of E∗ obtained within at the quadrupole defor-

mation parameter β2 = 0.276 at several J . The dotted

and dashed lines stand for the FTBCS and FTBCS1

results, respectively. The solid lines are the experimen-

tally extracted level densities

tial, and rotational frequency. The FTBCS1 equa-
tion for the pairing gap has the final form as ∆k =
∆ + δ∆k , where ∆ = G

∑
k′ uk′vk′(1− n+

k′ − n−

k′) ,
δ∆k = GδN 2

k ukvk/(1−n+
k −n−

k ) , with uk, vk, and nk

being the Bogolyubov’ u, v coefficients and quasipar-
ticle occupation numbers, respectively. The total level
density ρ(E , J) is calculated as ρ(E , J) = ρ(E ,M =
J) − ρ(E ,M = J + 1) , where ρ(E ,M) is obtained by
using the inverse Laplace transformation of the grand
partition function.

Because of quasiparticle number fluctuations, the
FTBCS1 gaps decrease monotonically with increasing
excitation energy E∗ and do not collapse at E∗ = E∗

c

as in the case of the FTBCS. Within the FTBCS1, the
pairing reentrance is seen very clearly at J = 20h̄ for
neutrons and at J = 30h̄ for protons. Consequently,
there appear local enhancements in the FTBCS1 level
densities at around 2 < E∗ < 5 MeV at these two val-
ues of J(Fig. 1). The FTBCS1 level densities agree
fairly well with the experimental data at all J values
considered in present work.
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