On-line test of rotating magnetic field system for β -NMR method

Y. Ishibashi, *1,*2 D. Nagae, *1 Y. Abe, *1,*2 Y.E. Ichikawa, *1 K. Sawahata, *1 A. Ozawa, *1 and H. Ueno*2

The β -ray detected nuclear magnetic resonance (β -NMR) method¹⁾ is an efficient method to measure the nuclear magnetic (μ) moment of unstable nuclei. The absolute value of μ moments are measured for various nuclei by using β -NMR. However, the sign of μ moments are rarely measured in experiment. In the β -NMR method, a linear oscillating magnetic field (RF), which can be a superposition of a right- and leftrotating RF, is applied to invert the direction of spin polarization. Thus, only the absolute value of μ moments is estimated from the applied frequency of the linear RF. Therefore, to determine the sign of a μ moment, applying a rotating RF is necessary. A rotating RF system has been under development^{2,3)} to determine the sign of a μ moment by using the β -NMR method. The rotating magnetic field is obtained using two Helmholtz-like coils with axes crossed at right angles. The experimental apparatus to produce the rotating RF is shown in Fig. 1, and a detailed description is given in Ref. 2 and 3.

In the present work, the performance of the system was studied with spin-polarized 20 F ($I^{\pi}=2^{+}$, $T_{1/2}=11.163$ s, $\mu(^{20}\text{F})=+2.09335(9)~\mu_{N}$) nuclei at the Research Center for Nuclear Physics, Osaka University. A spin-polarized 20 F nucleus was produced in the $^{19}\text{F}(\overrightarrow{d},\text{p})^{20}\text{F}$ reaction. In this reaction, the polarization of the beam particles is transferred to each nucleus. The \overrightarrow{d} beam was produced using a polarized ion source⁴, and accelerated at E/A=10~MeV using the AVF cyclotron. The polarized beams were impinged on a CaF₂ crystal (0.5 mm^t) to produce the polarized ^{20}F . The crystal was placed at the center of the β -NMR apparatus (See Fig. 1.) at room temperature with a static magnetic field $B_0=500~\text{mT}$ applied.

The β -rays emitted from ²⁰F nuclei were detected with plastic scintillator telescopes located above and below the crystal. The up/down ratio R of the β -ray counts is written as $R_0 \approx a(1+A_{\beta}P)/(1-A_{\beta}P)$, where a denotes a constant factor representing asymmetries in counter solid angles and efficiencies and A_{β} and Pdenote the β -ray asymmetry parameter and the degree of spin-polarization, respectively. A rotating RF perpendicular to B_0 is applied to $^{20}\mathrm{F}$ by using the two pairs of coils. If the frequency and direction of the rotating RF correspond to the resonance values, the direction of the spin polarization is inverted $(P \rightarrow -P)$ by the NMR. Thus, the up/down ratio is changed as $R \approx a(1 - A_{\beta}P)/(1 + A_{\beta}P)$. When the polarization is altered because of the resonant spin change, a change appears in the ratio R_0/R . The β -ray asymmetry $A_{\beta}P$

is written as $A_{\beta}P = \sqrt{(R_0/R)} - 1/\sqrt{(R_0/R)} + 1$.

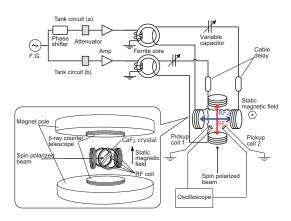


Fig. 1. Block diagram of the RF system for the rotating magnetic field and a schematic layout of the β -NMR setup.

The \overrightarrow{d} beam was pulsed with beam-on and beam-off periods of 16 s and 22.02 s, respectively. In the beam-off period of a cycle, RF was applied for the first 10 ms. Subsequently, the β -rays were counted for 22 s, and in the last 10 ms of the beam-off period RF was applied again to restore the spin direction. First, we measured R_0 without RF and then, we measured R with RF. This cycle was repeated until the required measurement statistics were attained.

In this experiment, we first measured a μ moment by using β -NMR applied to the linear RF using tank circuit (a); then, measured it using another one. Figure 2 shows obtained $A_{\beta}P$ values. Next, we attempted to measure the sign of $\mu(^{20}\mathrm{F})$ by applying a rotating RF. Analysis of the results is in progress.

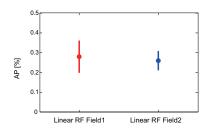


Fig. 2. Obtained $A_{\beta}P$ value of ²⁰F with applied linear RF field.

References

- 1) K. Sugimoto et al.: J. Phys. Soc. Jpn. 21, 213 (1966)
- 2) T. Niwa et al.: UTTAC 81, 5 (2012)
- 3) D. Nagae et al.: Hype. Int. 220, 65 (2013)
- K. Hatanaka et al.: Nucl. Instr. and Meth. 217, 397 (1983)

^{*1} Institute of Physics, Univ. of Tsukuba

^{*2} RIKEN Nishina Center