Search for new neutron-rich isotopes with $Z\sim 55-70$ using a 345 MeV/nucleon ²³⁸U beam

N. Fukuda,*¹ N. Inabe,*¹ D. Kameda,*¹ H. Suzuki,*¹ H. Takeda,*¹ D.S. Ahn,*¹ D. Murai,*^{1,*2} K. Yoshida,*¹ K. Kusaka,*¹ Y. Yanagisawa,*¹ M. Ohtake,*¹ Y. Shimizu,*¹ Y. Sato,*¹ H. Sato,*¹ H. Otsu,*¹ H. Baba,*¹ G. Lorusso,*¹ P.-A. Söderström,*¹ T. Isobe,*¹ N. Imai,*³ M. Mukai,*^{1,*4} S. Kimura,*⁴ H. Miyatake,*⁴ N. Iwasa,*⁵ A. Yagi,*⁶ R. Yokoyama,*³ O.B. Tarasov,*⁷ H. Geissel,*⁸ and T. Kubo*¹

Since the commissioning of the BigRIPS separator¹⁾ in 2007, an extensive search for new isotopes has been conducted to expand the region of accessible exotic nuclei. By the end of 2013, about 100 new neutron-rich isotopes had been observed using the in-flight fission of a $^{238}\mathrm{U}$ beam $^{2-4)}$, and 4 new neutron-deficient nuclei had been observed by the projectile fragmentation of a $^{124}\mathrm{Xe}$ beam $^{5)}$. In April 2014, we searched for new neutron-rich isotopes with the atomic number $Z\sim55$ –70 for the second time since the 2011 experiment $^{3)}$, with an increased beam intensity.

The neutron-rich isotopes were produced by the inflight fission of a 238 U beam at 345 MeV/nucleon. The maximum beam intensity was approximately 12.5 pnA. The fission fragments were collected and separated with the BigRIPS. The experimental conditions are summarized in Table1. We adopted two different $B\rho$ settings of the separator, each targeting new isotopes around 161 Pr (Pr setting) and 180 Er (Er setting). The settings were determined using the measured cross sections⁶⁾ and the detailed simulations with the code LISE++ 7).

Table 1. Summary of the experimental conditions.

Setting	Pr setting	Er setting
Production target	Be 4.0 mm	Be 6.9 mm
Isotope tuned	$^{161}\mathrm{Pr}$	$^{180}{\rm Er^{a)}}$
$B\rho$ of D1	$7.527~\mathrm{Tm}$	$6.311~\mathrm{Tm}$
Degrader at F1	Al 1.4 mm	Al 0.98 mm
Degrader at F5	Al 1.4 mm	Al 0.96 mm
F1 slit	$\pm 64.2~\mathrm{mm}$	+32.1/-42.8 mm
F2 slit	+10/-3 mm	+4/-3 mm
F5 slit	$\pm 120~\mathrm{mm}$	$\pm 120~\mathrm{mm}$
F7 slit	$\pm 25~\mathrm{mm}$	$\pm 25~\mathrm{mm}$
Average intensity	12.6 pnA	3.39 pnA
Running time	54.6 h	44.2 h
Total dose of ²³⁸ U	1.55×10^{16}	3.36×10^{15}
	particles	particles

 $^{^{\}rm a)}$ Hydrogen-like (Q = 67) ions were chosen in the first half of the first stage of BigRIPS.

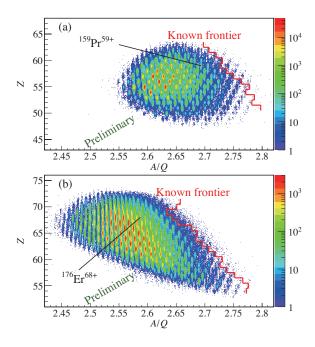


Fig. 1. Z versus A/Q particle identification plots obtained in the Pr (a) and Er (b) settings. The known frontiers are indicated by the red lines.

Particle identification (PID) was based on the TOF- $B\rho$ - ΔE method to deduce Z and the mass-to-charge ratio $(A/Q)^{8)}$. The preliminary PID plots of Z versus A/Q are shown in Fig.1. The relative root mean square A/Q and Z resolutions are typically 0.037% and 0.45%, respectively, for the ¹⁶¹Pr setting, and 0.047% and 0.88%, respectively, for the ¹⁸⁰Er setting. A total of 18 new isotopes have preliminarily been identified ranging from Z=56 to 69. Further analysis is currently in progress.

References

- 1) T. Kubo: Nucl. Instr. Meth. B **204**, 97 (2003).
- 2) T. Ohnishi et al.: J. Phys. Soc. Jpn. 79, 073201 (2010).
- D. Kameda et al.: RIKEN Accel. Prog. Rep. 46, 20 (2013).
- Y. Shimizu et al.: RIKEN Accel. Prog. Rep. 47, 47 (2014).
- 5) H. Suzuki et al.: Nucl. Instr. Meth. B 317, 756 (2013).
- 6) D. Kameda et al.: RIKEN Accel. Prog. Rep. 47, viii
- O.B. Tarasov and D. Bazin: Nucl. Instr. Meth. B 266, 4657 (2008).
- 8) N. Fukuda et al.: Nucl. Instr. Meth. B 317, 323 (2013).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Rikkyo University

^{*3} Center for Nuclear Study, University of Tokyo

^{*4} High Energy Accelerator Research Organization (KEK)

^{*5} Department of Physics, Tohoku University

^{*6} Department of Physics, Osaka University

^{*7} NSCL, Michigan State University

^{*8} GSI