Interaction of ⁸B, unstable and loosely bound, with ²⁰⁸Pb: scattering and breakup

C. Signorini,^{*1} A. Boiano,^{*2} C. Boiano,^{*3} C. Manea,^{*4} M. Mazzocco,^{*4} C. Parascandolo,^{*2} D. Pierroutsakou,^{*2} A.M. Sánchez-Benítez,^{*5} E. Strano,^{*4} D. Torresi,^{*4} M. La Commara,^{*2} H. Yamaguchi,^{*6} D. Kahl,^{*6} Y. Hirayama,^{*7} H. Ishiyama,^{*7} N. Imai,^{*6,*7} N. Iwasa,^{*8} S.C. Jeong,^{*7,*13} S. Kimura,^{*7} Y.H. Kim,^{*7} S. Kubono,^{*6,*9} H. Miyatake,^{*7} M. Mukai,^{*7} T. Nakao,^{*7} Y. Sakaguchi,^{*6} T. Teranishi,^{*10} Y. Wakabayashi,^{*9} Y.X. Watanabe,^{*7} C.J. Lin,^{*11} H.M. Jia,^{*11} L. Yang,^{*11} and Y.Y. Yang^{*12}

The main motivation of this experiment was to investigate of the reaction dynamics induced by the radioactive ion-beam ⁸B, extremely loosely bound with S_p =137keV, at Coulomb barrier energy: i.e., reaction cross section deduced from elastic scattering, as well as the transfer and/or breakup processes. The ⁸B beam, provided by the CRIB facility, was produced via the inverse kinematics reaction ³He(⁶Li, n)⁸B. The primary ⁶Li beam intensity ranged from 1 to 3 eµA, resulting in a ⁸B intensity of $\sim 10^4$ Hz, with an energy of 50±1 MeV. The ⁶Li ion source had to be retuned twice owing to the total consumption of the lithium material. This resulted in a beamtime loss of two days, allowing us to accumulate statistics for four days beamtime on target. As expected, the ⁸B beam was contaminated by ⁷Be, via the ³He(⁶Li,pn)⁷Be reaction, by ³He, recoiling from the ³He material of the production gas target, and by some ⁶Li halo (originating from the primary beam, that was around 10⁸ times more intense than the secondary one); thus, the ⁸B beam purity achieved was approximately 20%. The contaminations were not problematic since each beam species was identified via a time of flight technique. The light charged particles produced in the reaction were detected and identified with six ΔE -E telescopes, consisting of 40–50 μ m + 300 μ m double sided silicon strip detectors. The detectors were arranged symmetrically around the target at a distance of pproximately 11 cm. All the detectors with the related electronics were brought from Italy, INFN¹. For the E-detectors we utilized for the first time, ASIC digital electronics, whereas we used for the ΔE detectors low-noise electronics; these electronics were also fully developed in Italy^{2,3}. The charged particles identified were ⁸B, ⁷Be, ⁶Li, ⁴He, ³He, and protons (Fig. #1), confirming our preliminary estimates: namely, the existence of a consistent

*2 Department. of Physics and INFN, Napoli

- *4 Dept. of Physics and Astronomy and INFN, Padova
- *5 University of Lisbon, Nuclear Physics Centre
- *6 CNS University of Tokyo, RIKEN
- *7 KEK
- *8 Department of Physics, Tohoku University
- *9 RIKEN Nishina Center
- *10 Department of Physics, Kyushu University
- *11 China Institute of Atomic Energy

*13 Institute for Basic Science

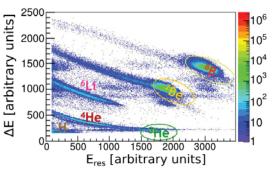


Fig. 1. $\Delta E\text{-}E_{res}$ identification of the different ions produced in the scattering of the cocktail 8B-7Be-3He beam onto a ²⁰⁸Pb target.

amount of transfer (p transferred with ⁷Be out) and breakup processes (\rightarrow ⁷Be+p, and possible subsequent ⁷Be breakup \rightarrow ³He+⁴He). Preliminary data from the angular distribution of the ⁸B elastic scattering confirm our expectations of a strong absorption occurring in the 8B-induced reactions.

In all the runs we were able to verify the good capabilities of the homemade electronics^{2,3} for identifying the various ions detected by the ΔE silicon via the built-in risetime detection. Fig. #2 shows a typical spectrum: signal rise time vs. ΔE , with the related ion identification.

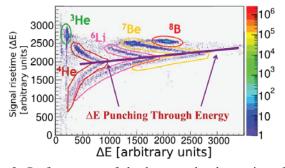


Fig. 2. Performances of the homemade electronics of the thin ΔE detectors. The measurement of the risetime signal vs. the energy loss allows for clear ion identification.

References

- 1) E.Strano et al., Nucl. Instr. and Meth. B317(2013)657
- 2) C.Boiano et al.; IEEE Nucl.Science Symposium and Medical Imaging Conference. (NSS/MIC)14-34(2012)865
- 3) C. Boiano et al.; IEEE Nucl.Science Symposium, Conference Records 1-173(2009)1399.

^{*1} INFN, LNL, Legnaro

^{*3} INFN-Sezione di Milano

^{*12} Institute of Modern Physics, Chinese Academy of Sciences