β -NMR measurement of ⁴¹S

Y. Ichikawa,^{*1} Y. Ohtomo,^{*1,*2} Y. Ishibashi,^{*1,*3} T. Suzuki,^{*2} T. Sato,^{*2} K. Imamura,^{*1,*4} T. Fujita,^{*5}
T. Furukawa,^{*6} K. Asahi,^{*2} T. Egami,^{*7} C. Funayama,^{*2} M. Hayasaka,^{*8} C. Hirao,^{*2} S. Kojima,^{*2} T. Komine,^{*2}
M. Matsumoto,^{*8} Y. Sakamoto,^{*2} A. Takamine,^{*9} D. Tominaga,^{*7} H. Yamazaki,^{*1} and H. Ueno^{*1}

The erosion of N = 28 shell gap has been suggested from several spectroscopic experimental data.¹⁻⁴ In particular, the ⁴³S nucleus is of considerable interest because shape coexistence is expected to occur, which is key to understanding the evolution of shell gaps far from stability. The isomeric state of ^{43}S at 320 keV is suggested to have a shape close to spherical with a spin-parity of $7/2^{-5,6}$ but both the spin-parity and deformed parameter of the ground state have not been determined directly. To investigate the mechanics leading to such an anomalous nuclear structure, we aim to measure the ground-state nuclear moment of 41,43 S. First, μ of ⁴¹S was measured using the β -ray detected nuclear magnetic resonance (β -NMR) method,⁷) combined with a technique to produce spin-polarized RI $beams.^{8)}$

The experiment was carried out at the RIPS facility at RIBF. The RI beam of ⁴¹S was produced by the fragmentation of a primary beam of ⁴⁸Ca at an energy of E = 63 MeV/nucleon on a primary target of ⁹Be with a thickness of 0.52 mm. The typical intensity of the 48 Ca beam at the target was 200 pnA. To realize the spin polarization in ⁴¹S, an emission angle of $\theta_{\rm F}$ > 1° and a momentum window of $p_{\rm F} = p_0 \times (1.015 \pm$ (0.025) were selected, where p_0 represents the central momentum of the fragment ⁴¹S. Under this condition, the particle identification of the secondary beam was performed on an event-by-event basis with information regarding time of flight (TOF) and energy loss (ΔE) as shown in Fig. 1. The beam was pulsed with durations of beam-on and beam-off periods of 2.9 s and 2.9 s, equally.

The ⁴¹S beam was then transported to the final focal plane and implanted into a stopper crystal of CaS with which AP = -0.14% was observed previously,⁹⁾ where A and P denote the asymmetry parameter for the β -ray emission and the degree of polarization of ⁴¹S, respectively. The CaS stopper was mounted between the poles of a dipole magnet that produces an external magnetic field of $B_0 = 0.5$ T. β rays emitted from the stopper were detected using plastic scintillator telescopes located above and below the stopper. An oscillating radio-frequency field B_1 was applied per-

- *² Department of Physics, Tokyo Institute of Technology
- $^{\ast 3}$ $\,$ Department of Physics, University of Tsukuba
- *⁴ Department of Physics, Meiji University
- *5 Department of Physics, Osaka University

- *7 Department of Physics, Hosei University
- *8 Department of Physics, Tokyo Gakugei University
- *9 Department of Physics, Aoyama Gakuin University

Fig. 1. Particle identification of ⁴¹S. The horizontal and vertical axes represent TOF between the plastic scintillators at F2 and F3, and ΔE taken at the silicon detector at F2, respectively.

pendicular to B_0 using a pair of coils. The frequency of B_1 was swept over a certain region, and spin reversal occurred when the region included the Larmor frequency. The spin reversal was detected through the change of the up/down ratio R of the β -ray counts at the two telescopes. Because the range within which the g-factor of ⁴¹S is predicted theoretically is quite wide, a fast switching system for changing the tankcircuit frequency¹⁰ was used. In this experiment, the g-factor search was conducted in the region where 0.2 < g < 0.8. The results of the NMR measurements are under analysis.

References

- 1) R. W. Ibbotson et al.: Phys. Rev. C 59, 642 (1999).
- 2) F. Sarazin et al.: Phys. Rev. Lett. 84, 5062 (2000).
- 3) Zs. Dombrádi et al.: Nucl. Phys. A727, 195 (2003).
- 4) S. Grévy et al.: Eur. Phys. J. A 25, 111 (2005).
- L. Gaudefroy et al.: Phys. Rev. Lett. **102**, 092501 (2009).
- R. Chevrier et al.: Phys. Rev. Lett. 108, 162501 (2012).
- 7) K. Sugimoto et al.: J. Phys. Soc. Jpn. 21, 213 (1966).
- 8) K. Asahi et al.: Phys. Lett. B 251, 488 (1990).
- 9) H. Shirai et al.: RIKEN Accel. Prog. Rep. 47, in print.
- N. Yoshida et al.: Nucl. Instrum. Meth. B **317**, 705 (2013).

^{*1} RIKEN Nishina Center

^{*6} Department of Physics, Tokyo Metropolitan University