β-NMR measurement of ${ }^{41} \mathrm{~S}$

Y. Ichikawa, ${ }^{* 1}$ Y. Ohtomo, ${ }^{* 1, * 2}$ Y. Ishibashi, ${ }^{* 1, * 3}$ T. Suzuki, ${ }^{* 2}$ T. Sato, ${ }^{* 2}$ K. Imamura, ${ }^{* 1, * 4}$ T. Fujita, ${ }^{* 5}$ T. Furukawa, ${ }^{* 6}$ K. Asahi, ${ }^{* 2}$ T. Egami, ${ }^{* 7}$ C. Funayama, ${ }^{* 2}$ M. Hayasaka, ${ }^{* 8}$ C. Hirao, ${ }^{* 2}$ S. Kojima, ${ }^{* 2}$ T. Komine, ${ }^{* 2}$ M. Matsumoto, ${ }^{* 8}$ Y. Sakamoto, ${ }^{* 2}$ A. Takamine, ${ }^{* 9}$ D. Tominaga, ${ }^{* 7}$ H. Yamazaki, ${ }^{* 1}$ and H. Ueno ${ }^{* 1}$

The erosion of $N=28$ shell gap has been suggested from several spectroscopic experimental data. ${ }^{1-4)}$ In particular, the ${ }^{43} \mathrm{~S}$ nucleus is of considerable interest because shape coexistence is expected to occur, which is key to understanding the evolution of shell gaps far from stability. The isomeric state of ${ }^{43} \mathrm{~S}$ at 320 keV is suggested to have a shape close to spherical with a spin-parity of $7 / 2^{-},{ }^{5,6)}$ but both the spin-parity and deformed parameter of the ground state have not been determined directly. To investigate the mechanics leading to such an anomalous nuclear structure, we aim to measure the ground-state nuclear moment of ${ }^{41,43} \mathrm{~S}$. First, μ of ${ }^{41} \mathrm{~S}$ was measured using the β-ray detected nuclear magnetic resonance (β-NMR) method, ${ }^{7}$) combined with a technique to produce spin-polarized RI beams. ${ }^{8)}$
The experiment was carried out at the RIPS facility at RIBF. The RI beam of ${ }^{41} \mathrm{~S}$ was produced by the fragmentation of a primary beam of ${ }^{48} \mathrm{Ca}$ at an energy of $E=63 \mathrm{MeV} /$ nucleon on a primary target of ${ }^{9} \mathrm{Be}$ with a thickness of 0.52 mm . The typical intensity of the ${ }^{48} \mathrm{Ca}$ beam at the target was 200 pnA . To realize the spin polarization in ${ }^{41} \mathrm{~S}$, an emission angle of $\theta_{\mathrm{F}}>$ 1° and a momentum window of $p_{\mathrm{F}}=p_{0} \times(1.015 \pm$ 0.025) were selected, where p_{0} represents the central momentum of the fragment ${ }^{41} \mathrm{~S}$. Under this condition, the particle identification of the secondary beam was performed on an event-by-event basis with information regarding time of flight (TOF) and energy loss (ΔE) as shown in Fig. 1. The beam was pulsed with durations of beam-on and beam-off periods of 2.9 s and 2.9 s , equally.

The ${ }^{41} \mathrm{~S}$ beam was then transported to the final focal plane and implanted into a stopper crystal of CaS with which $A P=-0.14 \%$ was observed previously, ${ }^{9}$ where A and P denote the asymmetry parameter for the β-ray emission and the degree of polarization of ${ }^{41}$ S, respectively. The CaS stopper was mounted between the poles of a dipole magnet that produces an external magnetic field of $B_{0}=0.5 \mathrm{~T} . \beta$ rays emitted from the stopper were detected using plastic scintillator telescopes located above and below the stopper. An oscillating radio-frequency field B_{1} was applied per-

[^0]

Fig. 1. Particle identification of ${ }^{41} \mathrm{~S}$. The horizontal and vertical axes represent TOF between the plastic scintillators at F2 and F3, and ΔE taken at the silicon detector at F2, respectively.
pendicular to B_{0} using a pair of coils. The frequency of B_{1} was swept over a certain region, and spin reversal occurred when the region included the Larmor frequency. The spin reversal was detected through the change of the up/down ratio R of the β-ray counts at the two telescopes. Because the range within which the g-factor of ${ }^{41} \mathrm{~S}$ is predicted theoretically is quite wide, a fast switching system for changing the tankcircuit frequency ${ }^{10}$) was used. In this experiment, the g-factor search was conducted in the region where $0.2<g<0.8$. The results of the NMR measurements are under analysis.

References

1) R. W. Ibbotson et al.: Phys. Rev. C 59, 642 (1999).
2) F. Sarazin et al.: Phys. Rev. Lett. 84, 5062 (2000).
3) Zs. Dombrádi et al.: Nucl. Phys. A727, 195 (2003).
4) S. Grévy et al.: Eur. Phys. J. A 25, 111 (2005).
5) L. Gaudefroy et al.: Phys. Rev. Lett. 102, 092501 (2009).
6) R. Chevrier et al.: Phys. Rev. Lett. 108, 162501 (2012).
7) K. Sugimoto et al.: J. Phys. Soc. Jpn. 21, 213 (1966).
8) K. Asahi et al.: Phys. Lett. B 251, 488 (1990).
9) H. Shirai et al.: RIKEN Accel. Prog. Rep. 47, in print.
10) N. Yoshida et al.: Nucl. Instrum. Meth. B 317, 705 (2013).

[^0]: *1 RIKEN Nishina Center
 *2 Department of Physics, Tokyo Institute of Technology
 *3 Department of Physics, University of Tsukuba
 *4 Department of Physics, Meiji University
 *5 Department of Physics, Osaka University
 *6 Department of Physics, Tokyo Metropolitan University
 *7 Department of Physics, Hosei University
 *8 Department of Physics, Tokyo Gakugei University
 *9 Department of Physics, Aoyama Gakuin University

