Study of nuclear structure in proton-rich carbon isotopes

T. Miyazaki,^{*1,*2} H. Otsu,^{*2} E. Yu. Nikolskii,^{*2,*5} Y. Shiga,^{*2,*3} M. Kurata-Nishimura,^{*2} S. Takeuchi,^{*2}
Y. Satou,^{*4} M. Kurokawa,^{*2} H. Baba,^{*2} G. Lorusso,^{*2} T. Isobe,^{*2} M. Niikura,^{*1} E. A. Kuzmin,^{*2,*5}
A. A. Korsheninikov,^{*2,*5} A. A. Ogloblin,^{*2,*5} S. A. Krupko,^{*6} M. S. Golovkov,^{*6} A. A. Bezbakh,^{*6}
R. S. Slepnev,^{*6} A. S. Fomichev,^{*6} S. I. Sidorchuk,^{*6} A. V. Gorshkov,^{*6} A. G. Knyazev,^{*6} P. Papka,^{*7}
H. J. Ong,^{*8} S. Kim,^{*4} J. W. Hwang,^{*4} S. Choi,^{*4} H. Chae,^{*4} E. Kim,^{*4} Y. H. Kim,^{*4} D. Lubos,^{*2,*9}
D. Beaumel,^{*2,*10} P. A. Söderström,^{*2} S. Sakaguchi,^{*11} S. Kubono,^{*2} A. K. Perrevoort,^{*2} E. Milman,^{*2}
S. Chebotaryov,^{*2} W. Powell,^{*2} T. Motobayashi,^{*2} K. Yoneda,^{*2} and H. Sakurai^{*1,*2}

The structures of the proton-rich carbon isotopes ${}^{8}C$ and ${}^{9}C$ were studied by the neutron transfer ${}^{10}C(p,t)$ and ${}^{10}C(p,d)$ reactions, respectively. The experiment was aimed at measuring the unknown excited states in ${}^{8}C$, which had not been achieved in the previous studies ${}^{1-4)}$ and identifying the decay property of the unbound first excited state in ${}^{9}C$.

The experiment was performed in 2013 at the RIKEN RIPS facility⁵⁾. A ¹⁰C secondary beam at 51 AMeV was impinged on the hydrogen gas target system (CRYPTA)^{6,7)}. Recoilied tritons and deuterons were identified by using the ΔE -E method, with the help of the Dubna telescope consisting of an annular double-sided strip silicon detector and 16 CsI(Tl) scintillators. The reaction residues were identified by the ΔE -E method using a four-plastic-scintillator array at 0 degree⁸⁾.

The excitation energy spectrum of ⁸C after subtracting the background is shown in Fig. 1. The ground state of ⁸C was observed. The deduced mass excess of the ⁸C nucleus was 34.9(1.1) MeV, which is consistent with the values reported in previous works¹⁻⁴). The differential cross-section of the ¹⁰C(p, t)⁸C_{g.s.} reaction will be analyzed in order to deduce the transferred angular momentum in the reaction.

The background-subtracted excitation energy spectrum of ${}^{9}C$ is shown in Fig. 2. The known ground and first excited states in ${}^{9}C$ were observed. The deduced excitation energy of the first excited state in ${}^{9}C$ was 2.4(5) MeV, which is consistent with the value obtained in the previous experiment⁹). By tagging the residual nucleus separated by the detectors at 0 degree, the decay paths of the first excited states in ${}^{9}C$ will be determined.

In summary, the ground state of ${}^{8}C$ and the ground and first excited states of ${}^{9}C$ were observed by us-

- *¹ Department of Physics, The University of Tokyo
- *² RIKEN Nishina Center
- *³ Department of Physics, Rikkyo University
- *4 Department of Physics, Seoul National University
- *5 National Research Centre "Kurchatov Institute"
- *6 Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research
- ^{*7} Department of Physics, Stellenbosch University
- *8 Research Center for Nuclear Physics, Osaka University
- *9 Technische Universität München
- $^{\ast 10}$ Institut de Physique Nucléaire d'Orsay, IN2P3/CNRS
- *11 Department of Physics, Kyushu University

ing the ${}^{10}C(p,t)$ and ${}^{10}C(p,d)$ reactions, respectively. Their excitation energies were consistent with the previous results. In future studies, observation of the excited states in ${}^{8}C$ with higher statistics, better energy resolution, and higher S/N ratio is expected.

Fig. 1. The excitation energy spectrum of ^{8}C .

Fig. 2. The excitation energy spectrum of ⁹C.

References

- 1) R. G. H. Robertson et al.: Phys. Rev. Lett. 32, 1207 (1974).
- 2) R. E. Tribble *et al.*: Phys. Rev. C 13, 50 (1976).
- 3) R. G. H. Robertson et al.: Phys. Rev. C 13, 1018 (1976).
- 4) R. J. Charity et al.: Phys. Rev. C 84, 014320 (2011).
- 5) T. Kubo et al.: Nucl. Instrum. Methods B 70, 309 (1992).
- 6) H. Ryuto et al.: Nucl. Instrum. Methods. A 555, 1 (2005).
- M. Kurata-Nishimura *et al.*: RIKEN Accel. Prog. Rep. 46, 165 (2013).
- 8) T. Miyazaki et al.: RIKEN Accel. Prog. Rep. 47, 23 (2014).
- 9) W. Benenson and E. Kashy: Phys. Rev. C 10, 2633 (1974).