## Spin-dipole response of <sup>4</sup>He by using (<sup>8</sup>He, <sup>8</sup>Li(1<sup>+</sup>))

H. Miya,<sup>\*1</sup> S. Shimoura,<sup>\*1</sup> K. Kisamori,<sup>\*1,\*2</sup> M. Assié,<sup>\*3</sup> H. Baba,<sup>\*2</sup> T. Baba,<sup>\*4</sup> D. Beaumel,<sup>\*3</sup> M. Dozono,<sup>\*1</sup> T. Fujii,<sup>\*2</sup> N. Fukuda,<sup>\*2</sup> S. Go,<sup>\*1</sup> F. Hammache,<sup>\*3</sup> E. Ideguchi,<sup>\*5</sup> N. Inabe,<sup>\*2</sup> M. Itoh,<sup>\*6</sup> D. Kameda,<sup>\*2</sup>

S. Kawase, <sup>\*1</sup> T. Kawabata, <sup>\*4</sup> M. Kobayashi, <sup>\*1</sup> Y. Kondo, <sup>\*7</sup> T. Kubo, <sup>\*2</sup> Y. Kubota, <sup>\*1,\*2</sup> C. S. Lee, <sup>\*1,\*2</sup>
Y. Maeda, <sup>\*8</sup> H. Matsubara, <sup>\*9</sup> S. Michimasa, <sup>\*1</sup> K. Miki, <sup>\*5</sup> T. Nishi, <sup>\*10</sup> M. Kurata-Nishimura, <sup>\*2</sup> S. Ota, <sup>\*1</sup>
H. Sakai, <sup>\*2</sup> S. Sakaguchi, <sup>\*11</sup> M. Sasano, <sup>\*2</sup> H. Sato, <sup>\*2</sup> Y. Shimizu, <sup>\*2</sup> H. Suzuki, <sup>\*2</sup> A. Stolz, <sup>\*12</sup> M. Takaki, <sup>\*1</sup>
H. Takeda, <sup>\*2</sup> S. Takeuchi, <sup>\*2</sup> A. Tamii, <sup>\*5</sup> H. Tokieda, <sup>\*1</sup> M. Tsumura, <sup>\*4</sup> T. Uesaka, <sup>\*2</sup> K. Yako, <sup>\*1</sup> Y. Yanagisawa<sup>\*2</sup> and R. Yokoyama<sup>\*1</sup>

The spin dipole (SD) ( $\Delta S = \Delta L = 1$ ) of spin-isospin responses is connected with the tensor correlation in nuclei. Especially, on a double-closed nucleus, the SD excitation contribution is large because of the nucleon configuration. The SD excitation function was measured on <sup>4</sup>He which is the lightest double-closed nucleus. This is important for the study of supernova nucleosynthesis with the neutrino-nucleus reaction<sup>1</sup>).

We coducted the exothermic charge-exchange (CE) reaction of  ${}^{4}\text{He}({}^{8}\text{He}, {}^{8}\text{Li}(1^{+})){}^{4}\text{H}$ . CE reactions are powerful tools to study the spin-isospin responses. The spin-flip transition of  ${}^{8}\text{He}(0^{+}) \rightarrow {}^{8}\text{Li}(1^{+})$  can be identified by measuring the de-excited  $\gamma$ -rays  $(E_{\gamma}=0.98 \text{ MeV})$  from the first 1<sup>+</sup> state of <sup>8</sup>Li. The beam energy region of 100–300 MeV/nucleon is suitable for the study of the spin-isospin responses<sup>2</sup>).

The experiment was performed at the RIKEN RIBF facility by using BigRIPS<sup>3</sup>), the high-Resolution beamline<sup>4)</sup>, and the SHARAQ spectrometer<sup>5)</sup>. The <sup>8</sup>He beam, which was produced via a projectilefragmentation reaction with an <sup>18</sup>O beam and <sup>9</sup>Be target, was transported to the secondary target position at an intensity of 2 MHz. We used the liquid-<sup>4</sup>He target<sup>6</sup>) with a thickness of 120 mg/cm<sup>2</sup>. In order to determine the excitation energy using missing mass method, the momenta of  ${}^{8}\text{He}$  and  ${}^{8}\text{Li}$  at an energy of 190 MeV/nucleon were measured at the beamline and SHARAQ within the low-pressure multi-wire drift chamber (LP-MWDC)<sup>7)</sup> and cathode readout drift chamber<sup>8)</sup>. The  $\gamma$ -ray detector array DALI2<sup>9)</sup> was placed around the target position to measure the 0.98 MeV  $\gamma$ -ray.

Figure 1 shows the missing mass spectrum of the (<sup>8</sup>He, <sup>8</sup>Li) reaction (black line). The contribution of both the <sup>4</sup>He target and hydrogen is included in this

- Department of physics, Tokyo Institute of Technology \*8
- Department of Applied Physics, University of Miyazaki \*9
- National Institute of Radiological Sciences
- $^{\ast 10}$  Department of physics, The University of Tokyo
- \*<sup>11</sup> Department of Physics, Kyushu University
- \*12National Superconducting Cyclotron Laboratory, Michigan State University



Fig. 1. Excitation energy distribution of <sup>4</sup>H obtained using missing mass method. The red line shows the background estimated from the contamination of the excitation energy distribution.

spectrum. The region around 10 MeV and -17 MeV shows the  ${}^{4}\text{He} \rightarrow {}^{4}\text{H}$  and  ${}^{1}\text{H} \rightarrow$  n reactions, respectively. The  ${}^{1}H \rightarrow n$  reaction originates at the plastic scintilator installed at the upstream of the target. The amount of contamination (red line) was estimated by using the energy loss of the LP-MWDC placed between the scintilator and the target. Thus, the  ${}^{4}\text{He}({}^{8}\text{He},$ <sup>8</sup>Li)<sup>4</sup>H reaction was obtained.

Further analysis to obtain the angular distribution and double differential cross-sections is now in progress to obtain the isovector SD strength of  ${}^{4}$ He.

References

- 1) T. Suzuki et al. Phys. Rev. C 74, 034307 (2006).
- 2) W. G. Love and M. A. Franey: Phys. Rev. C 24, 1073 (1981).
- 3) T. Kubo et al.: Nucl. Instr. Meth. B 204, 97-113 (2003).
- 4) T. Kawabata et al.: Nucl. Instr. Meth. B 266, 4201-4204 (2008).
- 5) S. Michimasa et al.: Nucl. Instr. Meth. B 317, 305-310 (2013).
- 6) H. Ryuto et al: Nucl. Instr. Meth. A 555, 1-5 (2005).
- 7) H. Miya et al.: Nucl. Instr. Meth. B 317, 701-704 (2013).
- 8) K. Kisamori et al.: CNS Ann. Rep. 2011 (2013).
- 9) T. Takeuchi et al.: Nucl. Instr. Meth. A 763, 1-8 (2014).

<sup>\*1</sup> Center for Nuclear Study, The University of Tokyo

<sup>\*2</sup> **RIKEN** Nishina Center

<sup>\*3</sup> Institut de Physique Nucléaire, Orsay

<sup>\*4</sup> Department of Physics, Kyoto University

<sup>\*5</sup> Research Center Nuclear Physics, Osaka University

<sup>\*6</sup> Cyclotron and Radioisotope Center, Tohoku University \*7