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The SEASTAR (Shell Evolution And Search for
Two-plus energies At the RIBF) project aims to mea-
sure systematically 2+1 energies of neutron-rich nuclei
via in-beam γ-ray spectroscopy. Its setup combines the
DALI2 γ-ray spectrometer1) with the MINOS setup
including a liquid hydrogen target system2), as shown
in Fig. 1, while exotic nuclei are produced with Bi-
gRIPS3). In the first campaign 2+1 energies of 66Cr,
70,72Fe, and 78Ni were measured with three different
secondary beam settings.
A 238U primary beam was accelerated to 345

MeV/nucleon and impinged on a 3-mm thick Be tar-
get at the entrance of BigRIPS. The beam intensity
varied between 13 to 15 particle-nA. The spectrom-
eter was tuned for 67Mn, 71,73Co, and 79Cu ions to
enable (p, 2p) reactions and to populate 2+1 states in
the above mentioned nuclei. Particle identification was
performed with the Bρ-∆E-TOF method, employing
standard BigRIPS detectors. Beam energies in front
of the MINOS target were around 250 MeV/nucleon,
beam purities in the order of 0.1–0.3 %, and total in-
tensities of 4 to 6 kHz.
The MINOS and DALI2 setups were installed at the

F8 focus. A reaction target thickness of 102 mm was
employed for all three settings. A key feature of the
MINOS system was its time projection chamber, which
enabled to reconstruct vertex positions of (p, 2p) (and
also (p, 3p)) reactions with an accuracy of a few mm2).
DALI2 was employed in its standard configuration of
186 large-volume NaI(Tl) detectors. However, MINOS
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Fig. 1. Schematic view of the SEASTAR setup with the

MINOS time projection chamber (yellow) mounted in-

side DALI2.

was installed further upstream than reaction targets
are usually employed, resulting in an azimuthal angu-
lar coverage of DALI2 between 10◦ and 100◦.
Reaction products were identified with the spec-

trometer ZeroDegree3), providing again particle iden-
tification via the Bρ − ∆E−TOF method with stan-
dard detectors. ZeroDegree was tuned for the (p, 2p)
reaction channel in MINOS, resulting in total rates be-
tween 450 and 1200 Hz.

Data were collected for 7.5 days during the three set-
tings in total, while secondary beam production with
BigRIPS took 1.5 days and 1 day was used for user
tuning. The 2+1 energies were observed on-line for the
66Cr, 70,72Fe, and 78Ni isotopes. Currently, these data
as well as many by-products are under analysis by sev-
eral groups belonging to the SEASTAR collaboration.
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Intermediate-energy Coulomb excitation of 104Sn:

Moderate E2 strength decrease approaching 100Sn†
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In recent years, several experimental findings gener-
ated a large interest regarding the E2 strength pattern
in the tin isotopes. While the neutron-rich isotopes
with A = 126, 128, 130 follow the anticipated trend of
smoothly decreasing B(E2)↑ values towards the major
shell closure well described by large-scale shell-model
(LSSM) calculations1,2), the proton-rich nuclei take a
different path. Commencing with the stable A = 114
isotope a steadily growing deviation from the shell-
model expectations was observed with almost constant
B(E2)↑ values for the A = 106 − 112 isotopes1–3). A
first attempt for 104Sn with limited statistics has re-
cently been made4). The result of 0.10(4) e2b2 indi-
cates a steep decrease of excitation strength in agree-
ment with LSSM calculations. In a second measure-
ment, a considerably larger value of 0.180(37) e2b2 was
obtained5). Here, we report on the first B(E2)↑ extrac-
tion of 104Sn from absolute Coulomb excitation cross-
sections at intermediate energies.

A 124Xe primary beam was accelerated up to an en-
ergy of 345 MeV/nucleon and impinged on a 3 mm
thick Be production target at the F0 focus of the Bi-
gRIPS fragment separator6). The Bρ − ∆E − Bρ

method was applied to select and purify secondary
beams of 104Sn and 112Sn in two subsequent measure-
ments. The secondary beams were transported to the
focal point F8, where a 557 mg/cm2 thick Pb target
was inserted to induce Coulomb excitation reactions.
To detect γ-rays from the 2+1 → 0+gs transitions, the

reaction target was surrounded by the DALI2 array7).
Reaction products were identified behind the reaction
target by the ZeroDegree spectrometer1).
A B(E2)↑ value of 0.173(28) e2b2 was deduced for

104Sn. The run with 112Sn, which has a known B(E2)↑

† Condensed from the article in Phys. Rev. C 90, 061302(R)
(2014).
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Fig. 1. Doppler corrected γ-ray spectra of 112Sn (top panel

a) and 104Sn (bottom panel b). The observed 2+1 → 0+gs
transitions are compared to simulations.

value, was used for feeding estimations. Our result
is in agreement with the 0.180(37) e2b2 obtained in
Ref.5) with largely overlapping error bars, but devi-
ates significantly from the value of 0.10(4) e2b2 ob-
tained in Ref.4). The drop in excitation strength is
much smoother than suggested in Ref.4) and cannot be
reproduced by present LSSM calculations using stan-
dard effective charges as well as proton and neutron
excitation across the N = Z = 50 shell.
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