Measurement of unbound states in ${ }^{17} \mathrm{C}$ at SAMURAI

S. Kim, ${ }^{* 1, * 2}$ Y. Satou, ${ }^{* 1}$ J.W. Hwang, ${ }^{* 1, * 2}$ T. Nakamura, ${ }^{* 2, * 3}$ N. A. Orr, ${ }^{* 4}$ Y. Kondo, ${ }^{* 2, * 3}$ J. Gibelin, ${ }^{* 4}$ N. Kobayashi, ${ }^{* 2, * 3}$ R. Tanaka, ${ }^{* 2, * 3}$ R. Minakata, ${ }^{* 2, * 3}$ S. Ogoshi, ${ }^{* 2, * 3}$ S. Nishi, ${ }^{* 2, * 3}$ D. Kanno, ${ }^{* 2, * 3}$ T. Nakashima, ${ }^{* 2, * 3}$ N. L. Achouri, ${ }^{* 4}$ T. Aumann, ${ }^{* 5}$ H. Baba, ${ }^{* 2}$ F. Delaunay, ${ }^{* 4}$ P. Doornenbal, ${ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ N. Inabe, ${ }^{* 2}$ T. Isobe, ${ }^{* 2}$ D. Kameda, ${ }^{* 2}$ T. Kobayashi, ${ }^{* 6, * 2}$ T. Kubo, ${ }^{* 2}$ S. Leblond, ${ }^{* 4}$ J. Lee, ${ }^{* 2}$ F. M. Marqués, ${ }^{* 4}$ T. Motobayashi, ${ }^{* 2}$ D. Murai, ${ }^{* 7}$ T. Murakami, ${ }^{* 8}$ K. Muto, ${ }^{* 6}$ N. Nakatsuka, ${ }^{* 8}$ A. Navin, ${ }^{* 9}$ H. Otsu, ${ }^{* 2}$ H. Sato, ${ }^{* 2}$ Y. Shimizu, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ K. Takahashi, ${ }^{* 6}$ H. Takeda, ${ }^{* 2}$ S. Takeuchi, ${ }^{* 2}$ Y. Togano, ${ }^{* 10, * 13}$ A. G. Tuff, ${ }^{* 11}$ M. Vandebrouck, ${ }^{* 12}$ and K. Yoneda*2

To study unbound states in ${ }^{17} \mathrm{C}$ above the neutron separation energy of $0.735(18) \mathrm{MeV}^{1)}$, an experiment was performed at RIBF during the first physics run of the SAMURAI spectrometer ${ }^{2)}$. The unbound states of ${ }^{17} \mathrm{C}$ were produced using the one-neutron knockout reaction of ${ }^{18} \mathrm{C}$. The ${ }^{18} \mathrm{C}$ beam was provided by BigRIPS. The beam intensity was typically 2300 pps with the energy of $250 \mathrm{MeV} /$ nucleon under the momentum acceptance of $\pm 3 \%$. Particle identification of the beam was carried out by employing the $B \rho$-TOFΔE method with a mass resolution of $A / \Delta A=770$ at 1 sigma. The unbound states of ${ }^{17} \mathrm{C}$ populated by one-neutron knockout of ${ }^{18} \mathrm{C}$ on a carbon reaction target with a thickness of $1.8 \mathrm{~g} / \mathrm{cm}^{2}$ immediately decays into a ${ }^{16} \mathrm{C}$ fragment and a neutron. The particle identification of this fragment was also carried out using the $B \rho$-TOF- ΔE method with a mass resolution of $A / \Delta A=250$ at 1 sigma. The identification of the states of the ${ }^{16} \mathrm{C}$ fragment subsequent to the decay was carried out on the basis of γ-n coincidence. The de-excitation γ-rays in ${ }^{16} \mathrm{C}$ were detected by a γ-ray detector array DALI2 ${ }^{3)}$, while neutrons were detected by the neutorn detector array NEBULA consisting of neutron detectors (NEUT) and charged-particle veto detectors (VETO). For NEUT, the timing resolution was 270 ps in a flight length of approximately 11 m .

The relative energy ($E_{\text {rel }}$) of ${ }^{17} \mathrm{C}$ was reconstructed using the momentum vectors of the ${ }^{16} \mathrm{C}$ fragment and the neutron. To determine the positions of the resonances, responses were generated using a Monte Carlo simulation that considers the beam characteristics, reaction mechanism, and detector resolutions. From the simulation, the $E_{\text {rel }}$ resolution was evaluated as $\Delta E_{\text {rel }}$

[^0]

Fig. 1. Preliminary spectrum of the relative energy of ${ }^{17} \mathrm{C}$. The black solid line represents the result of the overall fit by three responses (red solid lines) and a Maxwellian background (a blue solid line).
$=0.4 \sqrt{E_{\text {rel }}} \mathrm{MeV}$ in FWHM.
A preliminary result of the fitting to the experimental spectrum with three responses and a Maxwellian background is shown in Fig. 1 where resonances at $E_{\text {rel }}=0.58(3), 2.01(2)$, and $3.30(6) \mathrm{MeV}$ are observed. In this measurement, the resonance at $E_{\text {rel }}=0.58(3)$ exhibited a correlation with a gamma line at 1.72(12) MeV , which corresponds to the 2^{+}state of $\left.{ }^{16} \mathrm{C}^{4}\right)$. Consequently, the three resonances correspond to excited states at $3.04(12), 2.75(3)$, and $4.04(6) \mathrm{MeV}$. The excited states at $2.75(3)$ and $4.04(6) \mathrm{MeV}$ are likely to correspond to the states at 2.71(2) and 3.93(2) MeV , respectively, which have been observed in the β delayed neutron measurement ${ }^{5)}$. Further analysis involving a comparison with Glauber model calculations is in progress to investigate the orbital angular momentum and spin-parity of the observed resonances.

References

1) M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer: Chin. Phys. C 36, 1603 (2012).
2) T. Kobayashi et al.: Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).
3) S. Takeuchi et al.: Nucl. Instrum. Methods Phys. Res. A 763, 596 (2014).
4) D. R. Tilley et al.: Nucl. Phys. A 564, 1 (1993).
5) H. Ueno et al.: Phys. Rev. C 87, 034316 (2013).

[^0]: *1 Department of Physics and Astronomy, Seoul National University
 *2 RIKEN Nishina Center
 *3 Department of Physics, Tokyo Institute of Technology
 *4 LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
 *5 Institut für Kernphysik, Technische Universität Darmstadt
 *6 Department of Physics, Tohoku University
 *7 Department of Physics, Rikkyo University
 *8 Department of Physics, Kyoto University
 *9 GANIL, CEA/DSM-CNRS/IN2P3
 *10 ExtreMe Matter Institute (EMMI) and Research Division, GSI
 *11 Department of Physics, University of York
 *12 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS
 *13 Department of Physics, Tokyo Institute of Technology

