Intermediate-energy Coulomb excitation of 104 Sn: Moderate E2 strength decrease approaching 100 Sn[†]

P. Doornenbal,^{*1} S. Takeuchi,^{*1} N. Aoi,^{*2} M. Matsushita,^{*3,*4} A. Obertelli,^{*5} D. Steppenbeck,^{*3} H. Wang,^{*1,*6}
L. Audirac,^{*5} H. Baba,^{*1} P. Bednarczyk,^{*7} S. Boissinot,^{*5} M. Ciemala,^{*7} A. Corsi,^{*5} T. Furumoto,^{*8} T. Isobe,^{*1}
A. Jungclaus,^{*9} V. Lapoux,^{*5} J. Lee,^{*1} K. Matsui,^{*10} T. Motobayashi,^{*1} D. Nishimura,^{*11} S. Ota,^{*3}
E.C. Pollacco,^{*5} H. Sakurai,^{*1,*10} C. Santamaria,^{*5} Y. Shiga,^{*4} D. Sohler,^{*12} and R. Taniuchi^{*10}

In recent years, several experimental findings generated a large interest regarding the E2 strength pattern in the tin isotopes. While the neutron-rich isotopes with A = 126, 128, 130 follow the anticipated trend of smoothly decreasing $B(E2)\uparrow$ values towards the major shell closure well described by large-scale shell-model (LSSM) calculations^{1,2)}, the proton-rich nuclei take a different path. Commencing with the stable A = 114isotope a steadily growing deviation from the shellmodel expectations was observed with almost constant $B(E2)\uparrow$ values for the A = 106 - 112 isotopes¹⁻³⁾. A first attempt for ¹⁰⁴Sn with limited statistics has recently been made⁴⁾. The result of $0.10(4) e^2 b^2$ indicates a steep decrease of excitation strength in agreement with LSSM calculations. In a second measurement, a considerably larger value of $0.180(37) e^2 b^2$ was obtained⁵⁾. Here, we report on the first $B(E2)\uparrow$ extraction of ¹⁰⁴Sn from absolute Coulomb excitation crosssections at intermediate energies.

A ¹²⁴Xe primary beam was accelerated up to an energy of 345 MeV/nucleon and impinged on a 3 mm thick Be production target at the F0 focus of the BigRIPS fragment separator⁶⁾. The $B\rho - \Delta E - B\rho$ method was applied to select and purify secondary beams of ¹⁰⁴Sn and ¹¹²Sn in two subsequent measurements. The secondary beams were transported to the focal point F8, where a 557 mg/cm² thick Pb target was inserted to induce Coulomb excitation reactions. To detect γ -rays from the $2_1^+ \rightarrow 0_{gs}^+$ transitions, the reaction target was surrounded by the DALI2 array⁷⁾. Reaction products were identified behind the reaction target by the ZeroDegree spectrometer¹⁾.

A $B(E2)\uparrow$ value of 0.173(28) e^2b^2 was deduced for ¹⁰⁴Sn. The run with ¹¹²Sn, which has a known $B(E2)\uparrow$

- † Condensed from the article in Phys. Rev. C 90, 061302(R) (2014).
- *1 RIKEN Nishina Center
- $^{\ast 2}$ $\,$ Research Center for Nuclear Physics, Osaka University
- $^{\ast 3}$ $\,$ Center for Nuclear Study, University of Tokyo
- *4 Department of Physics, Rikkyo University
- *5 CEA Saclay
- *6 State Key Laboratory of Nuclear Physics and Technology, Peking University
- *⁷ Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences
- *⁸ National Institute of Technology, Ichinoseki College
- *⁹ Instituto de Estructura de la Materia, CSIC
- ^{*10} Department of Physics, University of Tokyo
- *¹¹ Department of Physics, Tokyo University of Science
- $^{\ast 12}$ Institute for Nuclear Research of the Hungarian Academy of Sciences

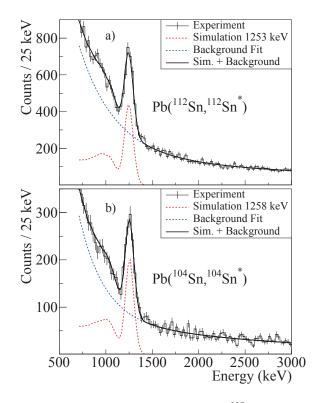


Fig. 1. Doppler corrected γ -ray spectra of 112 Sn (top panel a) and 104 Sn (bottom panel b). The observed $2^+_1 \rightarrow 0^+_{gs}$ transitions are compared to simulations.

value, was used for feeding estimations. Our result is in agreement with the 0.180(37) $e^{2}b^{2}$ obtained in Ref.⁵⁾ with largely overlapping error bars, but deviates significantly from the value of 0.10(4) $e^{2}b^{2}$ obtained in Ref.⁴⁾. The drop in excitation strength is much smoother than suggested in Ref.⁴⁾ and cannot be reproduced by present LSSM calculations using standard effective charges as well as proton and neutron excitation across the N = Z = 50 shell.

References

- 1) A. Banu et al., Phys. Rev. C 72, 061305 (2005).
- 2) A. Ekström et al., Phys. Rev. Lett. 101, 012502 (2008).
- 3) C. Vaman et al., Phys. Rev. Lett. 99, 162501 (2007).
- 4) G. Guastalla et al., Phys. Rev. Lett. 110, 172501 (2013).
- 5) V. Bader et al., Phys. Rev. C 88, 051301(R) (2013).
- T. Kubo *et al.*, Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
- 7) S. Takeuchi et al., Nucl. Instr. Meth. A 763, 596 (2014).