Experimental study of isoscalar and isovector dipole resonances in neutron-rich oxygen isotopes

N. Nakatsuka,^{*1,*2} H. Baba,^{*2} N. Aoi,^{*10} T. Aumann,^{*3} R. Avigo,^{*5,*14} S. R. Banerjee,^{*12} A. Bracco,^{*5,*14} C. Caesar,^{*3} F. Camera,^{*5,*14} S. Ceruti,^{*5,*14} S. Chen,^{*13,*2} V. Derya,^{*4} P. Doornenbal,^{*2} A. Giaz,^{*5,*14} A. Horvat,^{*3} K. Ieki,^{*11} N. Imai,^{*7} T. Kawabata,^{*1} K. Yoneda,^{*2} N. Kobayashi,^{*8} Y. Kondo,^{*9} S. Koyama,^{*8} M. Kurata-Nishimura,^{*2} S. Masuoka,^{*7} M. Matsushita,^{*7} S. Michimasa,^{*7} B. Millon,^{*5} T. Motobayashi,^{*2} T. Murakami,^{*1} T. Nakamura,^{*9} T. Ohnishi,^{*2} H. J. Ong,^{*10} S. Ota,^{*7} H. Otsu,^{*2} T. Ozaki,^{*9} A. Saito,^{*9} H. Sakurai,^{*2,*8} H. Scheit,^{*3} F. Schindler,^{*3} P. Schrock,^{*3} Y. Shiga,^{*11,*2} M. Shikata,^{*9} S. Shimoura,^{*7} D. Steppenbeck,^{*2} T. Sumikama,^{*6} I. Syndikus,^{*3} H. Takeda,^{*2} S. Takeuchi,^{*2} A. Tamii,^{*10} R. Taniuchi,^{*8} Y. Togano,^{*9} J. Tscheuschner,^{*3} J. Tsubota,^{*9} H. Wang,^{*2} O. Wieland,^{*5} K. Wimmer,^{*8} Y. Yamaguchi,^{*7} and J. Zenihiro^{*2}

Giant resonance is one of the most important phenomena for understanding quantum many-body systems. Neutron-rich nuclei are predicted to have exotic giant resonances due to their smaller neutron separation energy and excess neutrons. One of the exotic giant resonances in neutron-rich nuclei is a dipole resonance found at excitation energies lower than 10 MeV^{1} . The nature of these resonances is of great interest. One of the method to understand the nature of these resonances is to investigate if they are iso-vector or iso-scalar resonances. In order to study the relationship between iso-vector and iso-scalar dipole resonances in neutron-rich oxygen isotopes, we performed an experiment at RIBF and measure the dipole resonances of the neutron-rich nuclei ²⁰O, ²²O, and ²⁴O. These beams were produced via projectile fragmentation of a 345MeV/nucleon 48 Ca beam on 9 Be targets with mass thicknesses of 2.8 g/cm², 2.8 g/cm², and 2.2 g/cm^2 . Γ rays from the excited beam particles were detected with large volume LaBr₃ crystals from INFN $Milano^{2}$ in combination with $DALI2^{3}$. Two different targets, 5 g/cm² Au for coulomb excitation and 300 mg/cm^3 liquid helium for inelastic α particle scattering, were used to obtain the iso-vector and iso-scaler dipole strengths respectively.

A preliminary particle identification (PID) plot of Z versus A/Z for the ²⁴O beam is shown in Fig. 1. PID was performed by the B ρ - Δ E-TOF technique using the BigRIPS. The $B\rho$ information was reconstructed from the time difference between the left- and right-hand sides of the plastic scintillator installed at the disper-

- $^{\ast 3}~$ Institut für Kernphysik, Technische Universität Darmstadt
- *4 Institut für Kernphysik, Universität zu Köln
- *⁵ Istituto Nazionale di Fisica Nucleare Milan
- *6 Department of Physics, Tohoku University
- ^{*7} Center for Nuclear Study, The University of Tokyo
- *8 Department of Physics, The University of Tokyo
- *9 Department of Physics, Tokyo Institute of Technology
- ^{*10} Research Center for Nuclear Physics, Osaka University
- *¹¹ Department of Physics, Rikkyo University
- ^{*12} Variable Energy Cyclotron Centre, The Indian Department of Atomic Energy
- *¹³ School of Physics, Peking University
- $^{\ast 14}$ University of Milan

sive focal plane. The achieved purity of ²⁰O, ²²O, and ²⁴O was 73%, 66%, and 51%, respectively. PID of the outgoing beams was performed by the same B ρ - Δ E-TOF technique using the ZD spectrometer. Low-pressure multi-wire drift chambers⁴) were used to measure B ρ of the outgoing beams. Figure 2 shows a preliminary PID plot of Z versus A/Z for the outgoing beam where an ²⁴O beam is on a Au target. The reaction products are clearly observed. The analysis of γ rays is in progress.

Fig. 1. PID plot of the ²⁴O beam setting

Fig. 2. PID plot of the ²⁴O beam and the Au target setting on ZD spectrometer

References

- 1) V. Derya et al. J. Phys. Conf. Ser. 366, 012012 (2012)
- A. Giaz et al. Nucl. Instrum. Methods Phys. Res., Sec. A 729, 910 (2013)
- S. Takeuchi et al. Nucl. Instrum. Methods Phys. Res., Sec. A 763, 596 (2014)
- 4) H. Miya et al. Nucl. Instrum. Methods Phys. Res., Sec. B 317, 701 (2013)

^{*&}lt;sup>1</sup> Department of Physics, Kyoto University

^{*&}lt;sup>2</sup> RIKEN Nishina Center