Study of shape evolution in neutron-rich Cs isotopes using β-decay spectroscopy

A. Yagi, ${ }^{* 1, * 2}$ A. Odahara, ${ }^{* 1}$ R. Daido, ${ }^{* 1, * 2}$ Y. Fang, ${ }^{* 1, * 2}$ H. Nishibata, ${ }^{* 1, * 2}$ R. Lozeva, ${ }^{* 3}$ C.-B. Moon, ${ }^{* 4}$
S. Nishimura, ${ }^{* 2}$ P. Doornenbal, ${ }^{* 2}$ G. Lorusso, ${ }^{* 2}$ P.-A. Söderström, ${ }^{* 2}$ T. Sumikama, ${ }^{* 5}$ H. Watanabe, ${ }^{* 6}$ T. Isobe, ${ }^{* 2}$ H. Baba, ${ }^{* 2}$ H. Sakurai, ${ }^{* 7, * 2}$ F. Browne, ${ }^{* 8, * 2}$ Z. Patel, ${ }^{* 9, * 2}$ S. Rice, ${ }^{* 9, * 2}$ L. Sinclair, ${ }^{* 10, * 2}$ J. Wu, ${ }^{* 11, * 2}$ Z.Y. Xu, ${ }^{* 12}$ R. Yokoyama, ${ }^{* 13}$ T. Kubo, ${ }^{* 2}$ N. Inabe, ${ }^{* 2}$ H. Suzuki, ${ }^{* 2}$ N. Fukuda, ${ }^{* 2}$ D. Kameda, ${ }^{* 2}$ H. Takeda, ${ }^{* 2}$ D.S. Ahn,*2 D. Murai, ${ }^{* 14}$ F.L. Bello Garrote, ${ }^{* 15}$ J.M. Daugas, ${ }^{* 16}$ F. Didierjean, ${ }^{* 3}$ E. Ideguchi, ${ }^{* 17}$ T. Ishigaki, ${ }^{* 1, * 2}$ H.S. Jung, ${ }^{* 18}$ T. Komatsubara, ${ }^{* 19}$ Y.K. Kwon, ${ }^{* 19}$ C.S. Lee, ${ }^{* 20}$ P. Lee, ${ }^{* 20}$ S. Morimoto, ${ }^{* 1, * 2}$ M. Niikura, ${ }^{* 7, * 2}$ I. Nishizuka, ${ }^{* 5}$ T. Shimoda, ${ }^{* 1}$ and K. Tshoo ${ }^{* 19}$

Shape evolution in neutron-rich nuclei with the neutron number $N>82$ and the proton number $Z>50$ beyond the doubly magic ${ }^{132} \mathrm{Sn}$ nucleus have been investigated along several isotopic chains. The EURICA project ${ }^{1)}$ provides us with an opportunity to study extremely neutron-rich nuclei using β-decay and isomer-decay spectroscopy. We reported the results of the isomer-search experiment for neutron-rich Cs isotopes ${ }^{2)}$, where new isomers were found in ${ }^{145} \mathrm{Cs},{ }^{146} \mathrm{Cs}$, ${ }^{147} \mathrm{Cs}$, and ${ }^{148} \mathrm{Cs}$. To understand the nuclear structure of these neutron-rich Cs isotopes in the low-spin states, we studied the β decay of neutron-rich Xe to Cs isotopes.

The neutron-rich Xe isotopes were produced through in-flight fission reaction using a $345-\mathrm{MeV} /$ nucleon ${ }^{238} \mathrm{U}$ beam. Particle identification was performed using the mass-to-charge ratio (A / Q) and the atomic number deduced from the information of time-of-flight (TOF), magnetic rigidity $(B \rho)$ and energy loss of fission fragments through BigRIPS and ZeroDegree Spectrometer ${ }^{3)}$. The isotopes were implanted into a stack of five double-sided Si-strip detectors $(W A S 3 A B i)^{1)}$. β rays emitted from the isotopes were also detected by WAS3ABi. The parent nuclei of the β decay were identified by position correlation on the WAS3ABi between the implanted fragments and the detected β rays. γ rays emitted after the β decay were detected by the γ-ray detector array which is called EURICA ${ }^{1)}$.

[^0]

Fig. 1. A / Q spectrum of neutron-rich Xe isotopes.
Figure 1 shows a spectrum of particle identification for the $\mathrm{Xe}(Z=54)$ isotopes as a function of A / Q. The fully-stripped ${ }^{A} \mathrm{Xe}^{54+}$ ions are separated from the hydrogen-like ${ }^{A-3} \mathrm{Xe}^{53+}$ ones owing to the high A / Q resolution.

Coincidence data of $\beta-\gamma$ and $\beta-\gamma-\gamma$ with particle identification of ${ }^{143} \mathrm{Xe},{ }^{144} \mathrm{Xe},{ }^{145} \mathrm{Xe},{ }^{146} \mathrm{Xe}$, and ${ }^{147} \mathrm{Xe}$ isotopes is analyzed. As an example, the γ-ray energy spectrum and the decay curve for the β decay of ${ }^{145} \mathrm{Xe}$ to ${ }^{145} \mathrm{Cs}$ are shown in Fig. 2. We found 11 new γ rays associated to the transitions in ${ }^{145} \mathrm{Cs}$ emitted after the β decay of ${ }^{145} \mathrm{Xe}$. These γ-ray peaks are represented as full circles in Fig. 2. Other peaks are mostly assigned to transitions in the granddaughter ${ }^{145} \mathrm{Ba}$ nucleus. The inset in Fig. 2 shows the decay curve deduced by the time difference between the implantation of ${ }^{145} \mathrm{Xe}$ and the detection of the β rays gated on newly found 5 γ rays in ${ }^{145} \mathrm{Cs}$. The half-life of the β decay was determined to be $197(10) \mathrm{ms}$, which is consistent with the reported one in Ref. 4. Detailed analyses are in progress.

Fig. 2. γ-ray energy spectrum and decay curve of the β decay of ${ }^{145} \mathrm{Xe}$ to ${ }^{145} \mathrm{Cs}$.

References

1) S. Nishimura et al.: Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
2) A. Yagi et al.: RIKEN Accel. Prog. Rep. 47, 3 (2014).
3) N. Fukuda et al.: Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013).
4) U.C. Bergmann et al.: Nucl. Phys. A714, 21 (2003).

[^0]: *1 Department of Physics, Osaka University
 *2 RIKEN Nishina Center
 *3 IPHC/CNRS and University of Strasbourg
 *4 Department of Display Engineering, Hoseo University
 *5 Department of Physics, Tohoku University
 *6 Department of Physics, Beihang University
 *7 Department of Physics, University of Tokyo
 *8 CEM, University of Brighton
 *9 Department of Physics, University of Surry
 *10 Department of Physics, University of York
 *11 Department of Physics, Peking University
 *12 Hong Kong University
 *13 CNS, University of Tokyo
 *14 Department of Physics, Rikkyo University
 *15 Department of Physics, University of Oslo
 *16 CEA/DAM
 *17 RCNP, Osaka University
 *18 Department of Physics, University of Notre Dame
 *19 IBS
 *20 Department of Physics, Chung-Ang University

