Study of shape evolution in neutron-rich Cs isotopes using β -decay spectroscopy

A. Yagi,^{*1,*2} A. Odahara,^{*1} R. Daido,^{*1,*2} Y. Fang,^{*1,*2} H. Nishibata,^{*1,*2} R. Lozeva,^{*3} C.-B. Moon,^{*4}

S. Nishimura,^{*2} P. Doornenbal,^{*2} G. Lorusso,^{*2} P.-A. Söderström,^{*2} T. Sumikama,^{*5} H. Watanabe,^{*6} T. Isobe,^{*2} H. Baba,^{*2} H. Sakurai,^{*7,*2} F. Browne,^{*8,*2} Z. Patel,^{*9,*2} S. Rice,^{*9,*2} L. Sinclair,^{*10,*2} J. Wu,^{*11,*2} Z.Y. Xu,^{*12} R. Yokoyama,^{*13} T. Kubo,^{*2} N. Inabe,^{*2} H. Suzuki,^{*2} N. Fukuda,^{*2}

D. Kameda,^{*2} H. Takeda,^{*2} D.S. Ahn,^{*2} D. Murai,^{*14} F.L. Bello Garrote,^{*15} J.M. Daugas,^{*16}

F. Didierjean,^{*3} E. Ideguchi,^{*17} T. Ishigaki,^{*1,*2} H.S. Jung,^{*18} T. Komatsubara,^{*19} Y.K. Kwon,^{*19}

C.S. Lee,^{*20} P. Lee,^{*20} S. Morimoto,^{*1,*2} M. Niikura,^{*7,*2} I. Nishizuka,^{*5} T. Shimoda,^{*1} and K. Tshoo^{*19}

Shape evolution in neutron-rich nuclei with the neutron number N>82 and the proton number Z>50 beyond the doubly magic ¹³²Sn nucleus have been investigated along several isotopic chains. The EU-RICA project¹) provides us with an opportunity to study extremely neutron-rich nuclei using β -decay and isomer-decay spectroscopy. We reported the results of the isomer-search experiment for neutron-rich Cs isotopes²⁾, where new isomers were found in ¹⁴⁵Cs, ¹⁴⁶Cs, ¹⁴⁷Cs, and ¹⁴⁸Cs. To understand the nuclear structure of these neutron-rich Cs isotopes in the low-spin states, we studied the β decay of neutron-rich Xe to Cs isotopes.

The neutron-rich Xe isotopes were produced through in-flight fission reaction using a 345-MeV/nucleon 238 U beam. Particle identification was performed using the mass-to-charge ratio (A/Q) and the atomic number deduced from the information of time-of-flight (TOF), magnetic rigidity $(B\rho)$ and energy loss of fission fragments through BigRIPS and ZeroDegree Spectrome ter^{3} . The isotopes were implanted into a stack of five double-sided Si-strip detectors (WAS3ABi)¹⁾. β rays emitted from the isotopes were also detected by WAS3ABi. The parent nuclei of the β decay were identified by position correlation on the WAS3ABi between the implanted fragments and the detected β rays. γ rays emitted after the β decay were detected by the γ -ray detector array which is called EURICA¹).

- *1 Department of Physics, Osaka University
- *2 **BIKEN** Nishina Center
- *3 IPHC/CNRS and University of Strasbourg
- *4 Department of Display Engineering, Hoseo University
- *5Department of Physics, Tohoku University
- *6 Department of Physics, Beihang University
- *7 Department of Physics, University of Tokyo
- *8 CEM, University of Brighton
- *9 Department of Physics, University of Surry
- *10Department of Physics, University of York
- *11Department of Physics, Peking University
- $^{\ast 12}$ Hong Kong University
- *13 CNS, University of Tokyo
- *14 Department of Physics, Rikkyo University
- *15 Department of Physics, University of Oslo
- *16 CEA/DAM
- *17 RCNP, Osaka University
- *¹⁸ Department of Physics, University of Notre Dame
- *¹⁹ IBS
- *²⁰ Department of Physics, Chung-Ang University

Fig. 1. A/Q spectrum of neutron-rich Xe isotopes.

Figure 1 shows a spectrum of particle identification for the Xe (Z = 54) isotopes as a function of A/Q. The fully-stripped $^{A}Xe^{54+}$ ions are separated from the hydrogen-like $^{A-3}Xe^{53+}$ ones owing to the high A/Qresolution.

Coincidence data of $\beta - \gamma$ and $\beta - \gamma - \gamma$ with particle identification of 143 Xe, 144 Xe, 145 Xe, 146 Xe, and 147 Xe isotopes is analyzed. As an example, the γ -ray energy spectrum and the decay curve for the β decay of ¹⁴⁵Xe to ¹⁴⁵Cs are shown in Fig. 2. We found 11 new γ rays associated to the transitions in 145 Cs emitted after the β decay of $^{145}\mathrm{Xe.}\,$ These $\gamma\text{-ray peaks}$ are represented as full circles in Fig. 2. Other peaks are mostly assigned to transitions in the granddaughter ¹⁴⁵Ba nucleus. The inset in Fig. 2 shows the decay curve deduced by the time difference between the implantation of 145 Xe and the detection of the β rays gated on newly found 5 γ rays in ¹⁴⁵Cs. The half-life of the β decay was determined to be 197(10) ms, which is consistent with the reported one in Ref. 4. Detailed analyses are in progress.

Fig. 2. γ -ray energy spectrum and decay curve of the β decay of 145 Xe to 145 Cs.

References

- 1) S. Nishimura et al.: Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 2) A. Yagi et al.: RIKEN Accel. Prog. Rep. 47, 3 (2014).
- 3) N. Fukuda et al.: Nucl. Instrum. Methods Phys. Res. B **317**, 323 (2013).
- 4) U.C. Bergmann et al.: Nucl. Phys. A714, 21 (2003).