β -Decay half-lives of ^{76,77}Co, ^{79,80}Ni and ⁸¹Cu: experimental indication of doubly magic ⁷⁸Ni[†]

Z. Y. Xu,^{*1,*2} S. Nishimura,^{*2} G. Lorusso,^{*2} F. Browne,^{*3,*2} P. Doornenbal,^{*2} G. Gey,^{*4,*5,*2} H.-S. Jung,^{*6} Z. Li,^{*7} M. Niikura,^{*1} P.-A. Söderström,^{*2} T. Sumikama,^{*8} J. Taprogge,^{*9,*10,*2} Zs. Vajta,^{*11,*2}
H. Watanabe,^{*12} J. Wu,^{*7,*2} A. Yagi,^{*13} K. Yoshinaga,^{*14} H. Baba,^{*2} S. Franchoo,^{*15} T. Isobe,^{*2} P. R. John,^{*16} I. Kojouharov,^{*17} S. Kubono,^{*2} N. Kurz,^{*17} I. Matea,^{*15} K. Matsui,^{*1} D. Mengoni,^{*16} P. Morfouace,^{*15} D. R. Napoli,^{*18} F. Naqvi,^{*19} H. Nishibata,^{*13} A. Odahara,^{*13} E. Şahin,^{*20} H. Sakurai,^{*1,*2} H. Schaffner,^{*17} D. Sohler,^{*11} I. G. Stefan,^{*15} D. Suzuki,^{*15} R. Taniuchi,^{*1} and V. Werner^{*19}

In order to study the nuclear shell evolution around ⁷⁸Ni, the β -decay half-lives of neutron-rich nuclei, i.e., ^{76,77}Co, ^{79,80}Ni and ⁸¹Cu were measured for the first time. The experiment was performed as part of an EU-RICA campaign at the RIBF facility, RIKEN in 2012. A high-intensity ²³⁸U beam was accelerated up to an energy of 345 A MeV by the RIKEN cyclotron accelerator complex before hitting a 3-mm-thick beryllium target to produce secondary beams via in-flight fission. The $^{238}U^{\bar{8}6+}$ beam was delivered at an average current of 5 pnA to the production target position. During the 13 days of the experiment, about 1.2×10^4 ⁷⁸Ni nuclei were identified and delivered to the experimental decay station at the end of the ZeroDegree spectrometer.

Figure 1 shows the experimental results (solid symbols) and the values in the literature (open symbols) as a function of the neutron number. Due to the fifth power relation between the half-life and its Q_{β} value, a linear relationship between $\log_{10} T_{1/2}$ and the neutron number of the parent nucleus is expected phenomenologically when Q_{β} evolves smoothly in an isotopic chain. In Fig. 1 this linearity is clearly visible below N = 50. Beyond that, a sudden reduction is seen in the Z = 28 isotopic chain due to the shorter half-lives of ^{79,80}Ni with reference to the systematics at $N \leq 50$. The fast β -decay processes in ^{79,80}Ni could be attributed to the neutrons outside the N = 50 shell, which result in higher Q_{β} values and β -decay rates of $^{79,80}\mathrm{Ni}$ compared to that of $^{78}\mathrm{Ni}.$

- t Condensed from the article in Phys. Rev. Lett. 113, 032505 (2014)
- *1 Department of Physics, University of Tokyo *2
- **RIKEN** Nishina Center
- *3 University of Brighton
- *4LPSC, Université Grenoble-Alpes, CNRS/IN2P3
- *5 ILL. Grenoble
- *6 Department of Physics, University of Notre Dame
- *7 Department of Physics, Peking University
- *8 Department of Physics, Tohoku University
- *9 Universidad Autónoma de Madrid
- *10Instituto de Estructura de la Materia, CSIC
- *11 Atomki, Debrecen
- *12IRCNPC, Beihang University
- *13Department of Physics, Osaka University
- $^{\ast 14}$ Department of Physics, Tokyo University of Science
- *15Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS
- $^{\ast 16}$ Università di Padova and INFN Sezione di Padova
- *17 GSI
- *18Istituto Nazionale di Fisica Nucleare
- *¹⁹ Wright Nuclear Structure Laboratory, Yale University

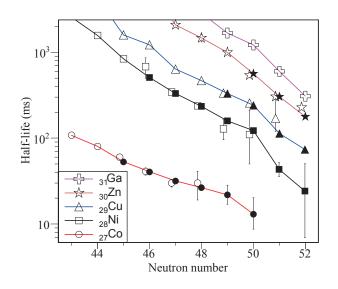


Fig. 1. Experimental half-lives as a function of neutron number for isotopes with Z = 27 - 31. All the solid symbols represent the half-lives determined in this work while the open symbols are the half-lives taken from the literature $^{1-4}$. The systematic trends in the different isotopic chains are highlighted by lines connecting the data points with a smaller uncertainty.

In addition, a large gap can be noticed in Fig. 1 between the half-lives of the Co and Ni isotopes from N = 44 to N = 50. According to shell model calculations, this can be explained by the filled proton $f_{7/2}$ single particle orbit (SPO) in Ni isotopes. In this case, the proton produced in the β decay of Ni isotopes fills the $\pi f_{5/2}$ SPO above $\pi f_{7/2}$, leading to a reduction of the Q_{β} value and longer half-lives of Ni isotopes than those of Co isotopes. The newly measured half-lives of 76,77 Co follow the decreasing trend with considerable gaps relative to those of the corresponding Ni isotones, indicating an almost constant Z = 28 shell gap without significant quenching up to N = 50.

References

- 1) NNDC database (2013), http://www.nndc.bnl.gov/;
- 2) C. Mazzocchi *et al.*: Phys. Lett. B **622**, 45 (2005);
- 3) P. Hosmer et al.: Phys. Rev. C 82, 025806 (2010);
- 4) M. Madurga et al.: Phys. Rev. Lett. 109, 112501 (2012):