Production of ⁸⁸Y for gamma-ray emission imaging

K. Higashikawa, *1,*2 A. Morioka, *1 H. Haba, *3 M. Ueda, *1 T. Fukuchi, *4 and S. Enomoto *1,*4

Radioimmunotherapy (RIT) is an internal radiation therapy that uses radiolabeled drugs, in particular particularly in monoclonal antibodies (mAbs) or peptides. ⁹⁰Y emits highly cytotoxic β - ray and is thus a promising radionuclide for use in RIT. However, 90Y cannot be readily imaged by nuclear medicine imaging modalities, because ⁹⁰Y is a pure β ⁻ emitter.¹⁾ On the other hand, ⁸⁶Y emits β ⁺ rays, which can be detected by PET.1-3) In addition, ⁸⁶Y-labeled drugs (mAbs or peptides) display identical biodistributions to 90Y-labeled drugs because 86Y is chemically identical to 90Y.1) Therefore, in recent years, 86Y has attracted attention as an attractive surrogate for studying ⁹⁰Y-labeled drugs. However, the physical half-life of ⁸⁶Y $(T_{1/2} = 14.7 \text{ h})$ is shorter compared to that of ⁹⁰Y $(T_{1/2} = 64.1 \text{ h})$ h), and thus, it is not suitable as a surrogate for investigating serial biodistribution of RIT drugs with long biological half-lives, such as mAb, which remain circulating in vivo for weeks.⁴⁾ A chemically identical surrogate with a longer half-life is desirable for development phases of ⁹⁰Y-labeled drugs.

⁸⁸Y is chemically identical to ⁹⁰Y and has a long half-life of $T_{1/2}$ = 106.6 d. Moreover, ⁸⁸Y emits γ rays with energies of 898 and 1836 keV, which can be detected using semiconductor Compton cameras through gamma-ray emission imaging (GREI).⁵) Therefore, the imaging of ⁸⁸Y-labeled drugs with GREI has the potential ability to investigate the serial biodistribution of ⁹⁰Y-labeled drugs with a long biological half-life, in particular, in preclinical studies. The final purpose of our study is to develop an imaging method for ⁸⁸Y-labeled drugs through GREI. In this study, we produced ⁸⁸Y for the GREI experiment.

⁸⁸Y was produced by the ^{nat}Sr(d,x)⁸⁸Y reactions. To prepare a ^{nat}SrO pellet target with a diameter of 10 mm, approximately 400 mg of ^{nat}SrCO₃ (Wako Pure Chemical Industries, Ltd., chemical purity: 99.99%) was heated for 2 h at 1000°C and pressed at 1.6 t. The pellet was covered with a 10-µm Al foil (chemical purity: 99.999%). The target was irradiated with a 24-MeV deuteron beam supplied from the RIKEN AVF cyclotron. The irradiation was performed for 5 h at a beam current of approximately 1.5 particle µA.

Thirty-nine days after the irradiations, ⁸⁸Y was chemically isolated from the ^{nat}SrO target by extraction chromatography using Ln-resin (Eichrom Technologies, Inc., particle size: 50-100 μ m) filled in a Muromac column (Muromachi Technos Co., Ltd., internal diameter: 5 mm, height: 50 mm). The Ln-resin column was washed in

advance with 3 mL of water, 10 mL of 10 M HNO₃, and then 4 mL of water, and was pre-equilibrated with 2 mL of 1 M HNO₃. The irradiated ^{nat}SrO target was dissolved in 1 M HCl and evaporated to dryness on a hot plate and under a heat lamp. The residue was dissolved in 5 mL of 1 M HNO₃, and was evaporated to dryness. Subsequently, the residue was dissolved in 5 mL of 1 M HNO₃, and was evaporated to dryness. Then, the residue was dissolved in 2 mL of 1 M HNO₃ and loaded onto the Ln-resin column. The resin was then washed with 16 mL of 1 M HNO₃. ⁸⁸Y was eluted from the resin with 10 mL of 10 M HNO₃. The eluted solution was heated to dryness, and 2 M HCl was added to the residue.

The γ -ray spectrum of the final purified product is shown in Fig. 1. Approximately 10 MBq of ⁸⁸Y was obtained. The radiochemical yield of ⁸⁸Y in the chemical isolation process was approximately 80%. In the next experiment, we plan to synthesize ⁸⁸Y-labeled drugs and try to visualize their biodistirbution using GREI.

Fig. 1. Gamma-ray spectrum of ⁸⁸Y after the chemical isolation.

References

- 1) T. K. Nayak et al.: Med. Chem. 7(5), 380 (2011).
- 2) S. Palm et al.: J. Nucl. Med. 44(7), 1148 (2003).
- T. K. Nayak et al.: Eur. J. Nucl. Med. Mol. Imaging. 37, 1368 (2010).
- D. R. Mould et al.: Curr. Opin. Drug Discov. Devel. 10(1), 84 (2007).
- 5) S. Motomura et al.: J. Anal. At. Spectrom. 23, 1089 (2008).

^{*1} Department of Pharmaceutical Analytical Chemistry, Graduate school of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University

^{*2} Japan Society for the Promotion of Science

^{*3} RIKEN Nishina Center

^{*4} Next-Generation Imaging Team, RIKEN