Yrast 6⁺ Seniority Isomers of ^{136,138}Sn[†]

G.S. Simpson,*1,*2,*3 G. Gey,*3,*4,*5 A. Jungclaus,*6 J. Taprogge,*6,*7,*5 S. Nishimura,*5 K. Sieja,*8 P. Doornenbal,*5 G. Lorusso,*5 H. Sakurai,*5,*10 P.-A. Söderström,*5 T. Sumikama,*9 Z.Y. Xu,*10 on behalf of the RIBF-85 collaboration

The shell model plays a key role in allowing a microscopic description of many of the properties of atomic nuclei. Its two ingredients are single-particle energies and effective nucleon-nucleon interactions. Experimental studies of semi-magic Sn nuclei beyond the doubly magic nucleus $^{132}{\rm Sn}$ provide information that allows the neutron-neutron part of effective interactions for the N=82-126 valence space to be tested and optimized. More generally, such studies provide a key benchmark for the methods used to construct effective interactions in a heavy-mass region far from stability. Currently there is little experimental data on the Sn isotopes beyond the N=82 shell closure, which are difficult to produce and study.

Excited states in the nuclei 136,138 Sn have been investigated by detecting delayed γ -ray cascades using the EURICA spectrometer¹⁾, which was coupled to the BigRIPS separator of the RIBF facility. These exotic nuclei were produced by the in-flight fission of a 345 MeV/nucleon 238 U beam. Cascades containing three delayed γ rays each were observed in coincidence with identified 136,138 Sn ions. The spins of the isomeric states of 136,138 Sn were assigned as (6^+) , in analogy with a very similar delayed cascade previously reported for 134 Sn²).

The energies of the excited states of $^{134,136,138}\mathrm{Sn}$ have been compared to the predictions of shell-model calculations, which used state-of-the-art realistic effective interactions. These calculations used the full N=82-126 valence space and the effective single-particle energies were the experimental ones. The experimentally determined level energies of $^{134,136,138}\mathrm{Sn}$ were all well reproduced. The $B(E2; 6^+_1 \to 4^+_1)$ values were also correctly predicted for $^{134,138}\mathrm{Sn}$, though this value was more than a factor of 5 away for $^{136}\mathrm{Sn}$, as shown in Fig. 1. Three other shell-model calculations reported in the literature, using realistic and empirical effective interactions, also failed to reproduce the $B(E2; 6^+_1 \to 4^+_1)$ value for $^{136}\mathrm{Sn}$ and are off by at least a factor of 2.

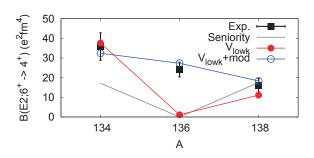


Fig. 1. Experimental (black squares) and theoretical reduced transition rates for $6_1^+ \rightarrow 4_1^+ \gamma$ decays in $^{134-138}$ Sn. The calculations used a realistic V_{low-k} interaction (red filled circles), a pairing-modified V_{low-k} interaction (blue open circles) and a pure $f_{7/2}$ seniority scheme (grey curve).

The near-constant energies of the (2_1^+) , (4_1^+) and (6⁺) states of ^{134,136,138}Sn are characteristic of dominant seniority 2 (one broken pair) excitations. The B(E2) values of seniority-conserving transitions are expected to follow the shape of a symmetric positive parabola, as shown in Fig. 1. The results obtained with a realistic V_{low-k} interaction follow a similar pattern to the seniority 2 scheme. Additional shell-model calculations have been performed which allowed particlehole excitations from the neutron $\nu 0h_{11/2}$ and proton $0g_{9/2}$ shells to the N = 82 - 126 and Z = 50 - 70valence spaces, respectively. These allowed the influence of core polarization effects on the transition rates of the neutron-rich Sn nuclei to be examined. However, the $B(E2; 6_1^+ \rightarrow 4_1^+)$ value for $^{136}{\rm Sn}$ was still not correctly reproduced. Reducing the energies of the $\nu 1f_{7/2}^2$ diagonal and off-diagonal matrix elements by $\sim 150 \text{ keV}$ allowed the $B(E2, 6_1^+ \rightarrow 4_1^+)$ of ^{136}Sn to be correctly predicted. This shift is equivalent to a reduction in the pairing strength. The results using this pairing-modified V_{low-k} interaction are shown in Fig. 1. Similar modifications to pairing were necessary to reproduce the level schemes of ^{72,74}Ni⁴⁾, illustrating the need for additional theoretical efforts on the construction of effective interactions.

References

- P.A. Soderström, et al.: Nucl. Instr. Meth. B 317, 649 (2013).
- 2) A. Korgul, et al.: Eur. Phys. J. A 7, 167 (2000).
- 3) A. Covello, et al.: J. Phys. Conf. Ser. 267, 012019 (2011)
- 4) H. Grawe, et al.: Nucl. Phys. A704, 211 (2002).

[†] Condensed from the article in Phys. Rev. Lett. **113**, 132502 (2014)

^{*1} University of the West of Scotland

^{*2} SUPA

^{*3} LPSC, UJF, CNRS, INPG

^{*4} Institut Laue-Langevin

^{*5} RIKEN Nishina Center

^{*6} IEM, CSIC

^{*7} UAM

^{*8} IPHC

^{*9} Department of Physics, Tohoku University

 $^{^{*10}}$ Department of Physics, University of Tokyo