Response of muonium to oxygen contents in hemoglobin and other biological aqueous solutions for cancer research

K. Nagamine,^{*1, *2, *3} A.D. Pant, ^{*4} I. Shiraki, ^{*4} E. Torikai,^{*4} K.Shimomura, ^{*3} F.L. Pratt, ^{*5} H. Ariga, ^{*6} K. Ishida,^{*7}

and J.S. Schultz*

Hypoxia, or low oxygenation, is known as an important factor in tumor biology; in cancer patients, an accurate measurement of O_2 concentration (c(O_2)) or partial pressure in specific regions is critical¹ therefore, improved methods for detecting O_2 are required. Several trials that employ PET, MRI and EPR have been conducted¹.

We have proposed the use of μ^+ as a new sensitive method to probe the existence of paramagnetic O_2 in cancer tumors in the human body. The μ^+ in water is known to take the states of diamagnetic μ^+ such as μ^+ OH (60%), paramagnetic muonium (Mu, $\mu^+ + e^-$) (20%), and a missing fraction (20%). In Mu, 50% fraction becomes an ortho state with spin 1, providing a spin rotation signal with a precession pattern (1.39 MHz/G) that is 100 times faster than that of diamagnetic μ^+ . Some experimental studies have been conducted on the oxygen-dissolving effects of the spin relaxation rate (λ_{Mu}) of paramagnetic Mu in pure water due to electron spin exchange interactions with paramagnetic O₂ in water; the rate change of λ_{Mu} against $c(O_2)$ is $(1.8 \pm 0.1) \times 10^{10}$ (L/mol)/s²⁾. A problem that remains to be solved is the effect of other magnetic molecules, which is the objective of the present study.

Experiment was conducted at Port 2 of RIKEN-RAL using 60 MeV/c decay μ^+ . Spin rotation and relaxation were detected under 2.2 G transverse fields at room temperature.

The biological samples used were as follows: 1) Albumin; Bovin serum (plasma) albumin 2) Serum; Donor horse serum 3) Hemoglobin (Hb); Polymerized hemoglobin of bovine origin in a lactated Ringer's solution at 13% concentration in the form of deoxy-Hb.

Before measuring the O₂ dependence of λ_{Mu} , its dependence on the concentration of each biological molecule was systematically measured. The increasing rates of λ_{Mu} were obtained as 25 $\mu s^{-1}/(g/L)$ for albumin, 1 $\mu s^{-1}/(vol.\%)$ for serum and 3.1 $\mu s^{-1}/(g/L)$ for Hb.

Then, by determining the relevant concentration for each molecule, the O₂ dependence of λ_{Mu} was measured. In these biological aqueous solutions, λ_{Mu} showed an almost similar change in relaxation against increasing O₂ concentration as that for pure water.

For higher Hb concentrations, by introducing O_2 , a part of deoxy-Hb (magnetic) becomes oxy-Hb (non-magnetic) so that the O_2 dependence of λ_{Mu} becomes non-linear.

Measurements were made upto 2.0 g/L c(Hb) and 20% $c(O_2)$ (Fig. 1). The O_2 dependence of λ_{Mu} at higher Hb concentrations was predicted by assuming the following relation³⁾: $\lambda_{Mu} = R_{Hb}(Mu) + R_{O2}(Mu)$. There, $R_{Hb}(Mu)$ is the relaxation rate due to the amount of deoxy-Hb obtained by solving the Hill's equation for the total Hb amount and $c(O_2)^{4}$, while $R_{O2}(Mu)$ is the relaxation rate due to the free molecular O₂ in solution obtained by the O₂ dependence data of the pure water and by the amount of free O₂ which is estimated by subtracting the O₂ amount used for oxy-Hb formation obtained by the Hill's equation. As summarized in Fig. 1, λ_{Mu} increases with increasing Hb at any fixed c(O₂); slower increasing rate at Hb higher than 1 g/L due to oxy-Hb formation. The λ_{Mu} becomes undetectably large (\geq 10 μ s⁻¹) at c(O₂) lower than 6% at higher c(Hb) of 100 g/L expected for human body.

Before carrying out the clinical application of the proposed method to studies on hypoxia, it is important to conduct further systematic studies on the behavior of O_2 in various other biological aqueous systems, especially with high-concentration Hb. Significant features of the present muon method can be summarized as follows: a) non-invasive nature, b) no need of a high magnetic field and c) sub-mm probing region confinement by the advanced beam method.⁵

Fig. 1 Summary of dependence on O_2 concentration of muonium relaxation rates in Hb aqueous solution; experimental data upto 2.0 g/L and predictions upto 150 g/L by the method described in the text.

References

- 1) J.L. Tatum et al., Int. J. Radiat. Biol., 82, 699 (2006).
- 2) E. Roduner et al., J. Chem. Faraday Trans., 91, 1935 (1995).
- 3) A.D. Pant et al., J. Phys.: Conf. Series, 551, (2014) 012043.
- 4) M. Samaja et al., Clin. Chem., 20, 110 (1983).
- 5) K. Nagamine, JPS Conf. Proc., 2, 010001 (2014).

^{*1} Atomic Physics Laboratory, RIKEN

^{*2} Physics & Astronomy, University of California, Riverside

^{*3} Muon Science Laboratory, IMSS, KEK

^{*4} Medicine and Engineering, University of Yamanashi

^{*5} ISIS, Rutherford Appleton Laboratory

^{*6} Catalysis Research Center, Hokkaido University

^{*7} RIKEN Nishina Center

^{*8} Bio-Engineering, University of California, Riverside