Li-ion diffusion in Li_xFePO_4 with $x=0,\,0.25$ and 0.5

I. Umegaki,*¹ M. Månsson,*² H. Nozaki,*¹ G. Kobayashi,*³ R. Kanno,*⁴ H. Guo,*⁵ K. Ishida,*⁵ I. Watanabe,*⁵ and J. Sugiyama*¹

Lithium iron phosphate, LiFePO₄, is used as a cathode material in Li-ion batteries. A comparison with the conventional cathode materials such as LiCoO_2 , LiNiO_2 , and LiMn_2O_4 showed that LiFePO_4 has a special advantage over because of its high stability during the lithium extraction/intercalation reaction at medium temperatures (around 400 K).

Based on electrochemical^{1,2)} and structural analyses,³⁾ the lithium extraction reaction from LiFePO₄ is represented as follows: LiFePO₄ - xLi \rightarrow (1 - x)LiFePO₄ + xFePO₄. Both LiFePO₄ and FePO₄ phases coexist in Li $_x$ FePO₄, and single phase samples of Li $_x$ FePO₄ have not been obtained so far. Following upon the μ +SR work on LiFePO₄,⁴⁾ we have measured μ +SR spectra on Li $_x$ FePO₄ (x = 0, 0.25, and 0.5) in order to understand the diffusive property shown in Li $_x$ FePO₄ sample consisting of the two phases.

Powder samples of Li $_x$ FePO $_4$ were prepared from LiFePO $_4$ by reacting it with NO $_2$ BF $_2$ in acetonitrile. Then, the Li-deficient powder sample was sealed into a titanium cell with a gold o-ring. The window of the cell was made of a Kapton film of 50 μ m thickness. The cell was mounted onto the Cu plate of a liquid-He flow-type cryostat in the temperature range between 10 and 400 K.

Figure 1 shows the temperature dependence of zero field (ZF-) and longitudinal field (LF-) $\mu^+ {\rm SR}$ spectra for FePO₄. Since there is no crucial change with temperature, the implanted muons are static up to 250 K. In fact, the spectra were fitted by a combination of a dynamic Kubo-Toyabe (KT) signal and a time-independent background signal from a powder cell. The field distribution width (Δ) and the field fluctuation (ν) were found to be independent of temperature; $\Delta_{\rm FePO4} = 7.1 \times 10^4 \ {\rm s}^{-1}$ and $\nu_{\rm FePO4} = 2.6 \times 10^4 \ {\rm s}^{-1}$.

On the other hand, dynamic behavior was clearly observed for Li_{0.25}FePO₄ and Li_{0.5}FePO₄. The μ^+ SR spectra were well fitted by a combination of two KT signals and a background signal. The two KT signals came from the muons stopped in the LiFePO₄ phase and those in the FePO₄ phase. Therefore, we used the same values of Δ_{FePO4} and ν_{FePO4} for the KT signal from the FePO₄ phase. Figure 2 shows the temperature dependence of Δ and ν for the three samples. As expected, the result is very consistent with that obtained for LiFePO₄. Assuming that the Li-ion jump to

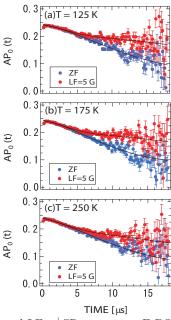


Fig. 1. ZF- and LF- μ^+ SR spectra on FePO₄ at (a) 125 K, (b) 175 K, and (c) 250 K.

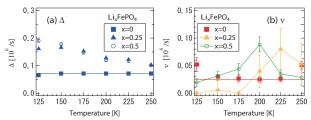


Fig. 2. Temperature dependence of (a) Δ and (b) ν obtained for FePO₄, Li_{0.25}FePO₄, and Li_{0.5}FePO₄.

interstitial sites,⁴⁾ we obtained the diffusion coefficient as: $D_{\rm Li} = 5.8 \times 10^{-11}~{\rm cm^2/s}$ at 200 K for Li_{0.5}FePO₄ and $D_{\rm Li} = 1.3 \times 10^{-11}~{\rm cm^2/s}$ for Li_{0.25}FePO₄. These values are smaller than $D_{\rm Li}$ for LiFePO₄,⁴⁾ implying the effect of Li-ion diffusion between the LiFePO₄ and FePO₄ phases. Such interphase diffusion is believed to be the most interesting process shown in the LiFePO₄ cathode. In order to understand the interphase Li-ion diffusion, however, we need to study the relationship between $D_{\rm Li}$ and x in Li_xFePO₄ in more detail.

References

- A. K. Pahdi et al.: J. Electrochem. Soc. 144, 1188 (1997).
- 2) W.-J. Zhang.: J. Power Sources, 196, 2962 (2011).
- 3) A. Yamada et al.: J. Electrochem. Socl. 148, A224
- 4) J. Sugiyama et al.: Phys. Rev. Lett. 103, 147601 (2009).

^{*1} Toyota Central Research and Development Labs., Inc.

^{*2} Material Physics, Royal Institute of Technology

^{*3} Institute for Molecular Science

^{*4} Department of Electronic Chemistry, Tokyo Institute of Technology

^{*5} RIKEN Nishina Center