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Charge density wave (CDW) and spin density wave 
(SDW) are well-known ground states in low-dimensional 
conductors and are based on different interactions. The 
former is due to electron-phonon interaction and the latter is 
due to on-site Coulomb interaction. Although manifests of 
CDW and SDW have been discussed separately, the 
coexistence of CDW and SDW is still an open problem. 

In terms of the mixture of CDW and SDW, we focus on 
the low-dimensional organic conductor 
-(BEDT-TTF)2MHg(SCN)4 (M=K, Rb). The compounds 
undergo the density wave state at TDW= 8 and 12 K for K 
and Rb-salt, respectively, as a consequence of the nesting of 
Fermi surfaces. Commonly, organic conductors have too 
little carrier density to screen the Coulomb interaction. 
SDW was suggested by anisotropy of the magnetic 
susceptibility1). On the other hand, CDW was suggested by 
NMR2), in which no magnetic order was observed. 
Accordingly, no clear evidence for the ground state of 
-(BEDT-TTF)2MHg(SCN)4 has been obtained as yet. We 
believe that this lack of evidence comes from the 
coexistence of CDW and SDW. Such a mixture of CDW 
and SDW forms a new ground state in low-dimensional 
conductors, and is interesting in terms of g-ology3), which is 
a theoretical approach to ground states in one-dimensional 
system. The present system is expected to be located at the 
boundary between CDW and SDW. To the best of our 
knowledge, no study thus far has been able to determine 
whether CDW and SDW coexist or compete with each 
other.  

For K-salt, Pratt et al.4) performed a zero-field SR 
measurement at a temperature range from 5 to 16 K. They 
reported SDW ordering with an amplitude of 310-3 B. 
However, this suggested value of the magnetic moment is 
extremely smaller than that of conventional SDW, for which 
the amplitude is in the order of 0.1 B. In order to 
re-examine the density wave state in 
-(BEDT-TTF)2MHg(SCN)4, we performed a SR 
experiment at a lower temperature with higher statistics. 

Small flakes of single crystals of 
-(BEDT-TTF)2MHg(SCN)4 (M=K, Rb) were grown by a 
standard electrochemical method with deuterated 
BEDT-TTF molecules to eliminate the nuclear spin of 
protons. In this experiment, we concentrated on Rb-salt, 
which has a higher TDW than K-salt. The transition 
temperature was determined as TDW= 12 K based on the 
temperature dependence of the static magnetic susceptibility. 
The powdered sample was mounted as a fly-past setup for a 
3He refrigerator. The SR measurement was performed 
down to 0.3 K. 

 Figure 1 shows the temperature dependence of the 
muon-spin precession component along the 
longitudinal-field (LF) of 20 G applied along the initial 
spin-polarization of the injected muon. This component 
reflects the existence of a static component obtained 
from internal fields at the muon site in deuterated 
-(BEDT-TTF)2RbHg(SCN)4. No drastic change was 
observed in the local field at TDW= 12 K. This tendency is 
qualitatively consistent with that obtained by Pratt et al.4). 
At present, data accuracy is not considerably higher than 
that of Pratt et al. with large error bars. We will try to 
improve the accuracy by collecting more muon events in 
the next trial. This is expected to reduce the upper limit 
of the expected magnetic moment which has been 
suggested by Pratt et al. to be 310-3 B following the 
same logic4). On the other hand, we found an unusual 
increase in the asymmetry below 2 K. This might be an 
indication of some degree of freedom or subphases5) in the 
density wave phase. 
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Fig. 1. Temperature dependence of asymmetry for 
deuterated -(BEDT-TTF)2RbHg(SCN)4. 
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