Magnetic ground state of Cu_6O_8MCl (M = Y, Pb) with a caged structure

K. Kawashima,^{*1,*2} H. Takeda,^{*1} S. Yasuda,^{*1} S. Igarashi,^{*1} W. Ito,^{*1} I. Kawasaki,^{*2} I. Watanabe,^{*2} and J. Akimitsu^{*1}

Cu₆O₈MCl (M=cation) compound has a Cu₆O₈ cage which forms a three-dimensional Cu-O network by connecting their faces in its crystal structure ¹⁾. The formal Cu valence in the Cu_6O_8 cage is +2.15 for M = Pb⁴⁺ and +2.33 for M = Y^{3+} , suggesting the existence of Cu⁺ (3 d^{10}), $Cu^{2+} (3d^9)$ with S = 1/2 spin, and $Cu^{3+} (3d^8)^{-2}$. If there is partial existence of S = 1/2 spins on the Cu site in the Cu₆O₈ cage, the static magnetic ordered state is expected in the square-lattice and the dynamical spin fluctuation in the triangular-lattice i.e., the magnetic competition state is expected in the magnetic ground state of Cu₆O₈MCl. To elucidate the detailed physical properties of Cu₆O₈MCl, we focused on clarifying the magnetic ground states of Cu₆O₈PbCl, which is the semiconducting material, and compared the observed data with the based material of Cu₆O₈YCl, which is the metallic compound with paramagnetic behavior.

 μ SR experiments were performed at the RIKEN-RAL Muon facility at the Rutherford-Appleton Laboratory, UK. Fig. 1 shows the zero field (ZF) μ SR spectra of Cu₆O₈MCl (M=Y, Pb) at various temperatures. With the decrease in the temperature, the initial asymmetry of Cu₆O₈PbCl rapidly decreased below 20 K (Fig. 1(b)). On the other hand, clear decreasing behavior of the initial asymmetry was not observed in the ZF- μ SR spectra of Cu₆O₈YCl down to 0.3 K, indicating that there is no magnetic ordered state in this system (Fig. 1(a)). The ZF- μ SR spectra in Fig. 1 were analyzed using the following function,

 $P(t) = A\exp(-\lambda t)G_{\rm KT}(\Delta, t) + A_{\rm B} \quad (1),$

where A is the initial asymmetry at t = 0, λ is relaxation ratio of the muon spin, and $A_{\rm B}$ is the background signal. $G_{\rm KT}(\Delta,t)$ is the static Kubo-Toyabe function with a half-width of Δ , describing the distribution of the nuclear-dipole field at the muon site ³⁾. Results of the best-fit of eq. 1 are indicated by the solid line in Fig. 1, and the observed adjusted parameters A, λ , and Δ of Cu₆O₈MCl (M=Y, Pb) as functions of temperature are shown in Fig. 2. A (a-relaxing) of Cu_6O_8YCl slightly decreases with the decrease in the temperature (Fig. 2), whereas λ and Δ of Cu₆O₈YCl are almost constant, being temperature independent. These facts indicate that there is no change of spin dynamic and long range magnetic ordered state in Cu₆O₈YCl, which is a metallic compound with paramagnetic behavior. For Cu₆O₈PbCl, the temperature dependence of *a*-relaxing, λ , and Δ change below 20 K, indicating the change in the magnetic spin state (Fig. 2). However, clear precession signal is not confirmed in the ZF-µSR spectra below 20 K. The Cu₆O₈ cage has a square-lattice and triangular-lattice on its surface, and the Cu sites in the Cu₆O₈ cage are occupied by various valences

*2 RIKEN-RAL, Nishina Center

of Cu⁺, Cu²⁺, and Cu^{3+ 2)}. These conditions encumber the formation of the completely static magnetic ordered state in Cu₆O₈PbCl. The observed behavior of ZF- μ SR spectra and Fig. 2 data of Cu₆O₈PbCl indicate the growth of the short-range magnetic interaction between S = 1/2 spins below 20 K. Consequently, the magnetic ground state of Cu₆O₈PbCl does not have a static long range magnetic ordered state such as an antiferromagnetic state in high- T_c cuprate. There is possibility that the short range interaction of Cu₆O₈PbCl forms the spin glass state below 20 K like under-doping material in high- T_c cuprate. The magnetic ground state of Cu₆O₈MCl compound depends on the valence state of the M site ion.

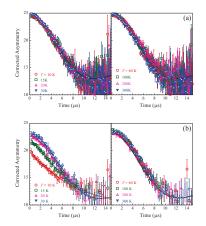


Fig. 1 ZF- μ SR time spectra of Cu₆O₈MCl ((a) M = Y, (b) M = Pb) at various temperatures. Solid lines indicate the fitting results of eq. (1).

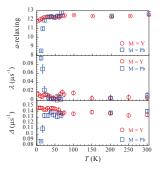


Fig. 2 Temperature dependence of the initial asymmetry A (*a*-relaxing), relaxation ratio λ , and Δ of Cu₆O₈MCl (M = Y, Pb) defined by the results of fitting for the Fig. 1 data.

References

- I. Yazawa, R. Sugise, N. Terada, M. Jo, K. Oka, and H. Ihara, Jpn. J. Appl. Phys. 29 L1693 (1990).
- 2) G. Zouganel, K. Bushida, I. Yazawa N. Terada, M. Jo, H. Hayakawa, and H. Ihara, Sol. St. Comm. **80** 709 (1991).
- Y. J. Uemura, T. Yamazaki, D. R. Harshman, M. Senba, and E. J. Ansaldo, Phys. Rev. B **31** 546 (1985).

^{*1} Department of Physics and Mathematics, Aoyama Gakuin University.