Investigation of hydrogen dynamics in hydroxyl salts Co₂(OD)₃Cl

X.L. Xu, *1 X.G. Zheng, *1 H.J. Guo, *2 and I. Watanabe *2

Hydroxyl salts of the type $M_2(OH)_3X$ (X = Cl, Br, or I) have been known for a long time. These compounds containing magnetic ions are magnetic materials. However, only in recent years their magnetic properties have been clarified as a result of our research ^{1,2}) and they are known as "frustrated magnets". Our latest finding is universal strong magnetic--dielectric--lattice coupling in all such compounds. Measurements of dielectric constants and lattice parameters revealed simultaneous changes at the respective $T_{\rm N}$ for all hydroxyl salts, which indicate strong magnetic--dielectric--lattice coupling. Moreover, we found that for Co₂(OH)₃Cl and Co₂(OH)₃Br, which have the highest crystal symmetry in the hydroxyl salt series shown in Fig. 1, the corresponding deuterated compounds Co₂(OD)₃Cl [Br] clearly exhibited a ferroelectric response at exceptionally high temperatures. Sharp peaks were observed at 229 K in both dielectric constants measured at 100 kHz for Co₂(OD)₃Cl.³⁾ Similar behaviors were observed in $Co_2(OD)_3Br (T_E = 224 \text{ K at } 100 \text{ kHz}).$

Fig. 1. High crystal symmetry of Co₂(OD)₃Cl.

Therefore, we performed μ SR experiments on Co₂(OD)₃Cl to reveal the mechanism of this unconventional ferroelectric response, using the muon facilities at RIEKN-RAL. We observed a change in the dynamics of D atoms in Co₂(OD)₃Cl through the nuclear dipolar field of D (Fig. 2).

The asymmetry a(t) of muon-spin-relaxation can be approximately expressed by a combination of the dynamic Kubo-Toyabe function and an exponential function. The dynamic Kubo-Toyabe function represents the contribution from the nuclear dipolar field of D atoms, and the exponential one accounts for magnetic relaxation.

Fig. 2. Muon-spin-relaxation spectra indicating a change in the dynamics of D atoms in Co₂(OD)₃Cl.

Fig.3. The analyzed fluctuation rate of the nuclear dipolar field of the D atoms in Co₂(OD)₃Cl.

The analyzed fluctuation rate of the nuclear dipolar field of the D atoms in $Co_2(OD)_3Cl$ shows an abrupt change around the ferroelectric transition temperature $T_E = 230$ K (Fig. 3), suggesting that the hydrogen (D) dynamics plays a critical role in the ferroelectric response of $Co_2(OD)_3Cl$.

References

- 1) X.G. Zheng et al.: Phys. Rev. B 71, 052409 (2005).
- 2) X.G. Zheng et al.: Phys. Rev. Lett. 95, 057201 (2005).
- 3) X.G. Zheng et al.: Phys. Rev. B 87, 174102 (2013).

^{*1} Department of Physics, Saga University

^{*2} RIKEN Nishina Center