First chemical synthesis and investigation of $Sg(CO)_{6}^{\dagger}$

J. Even, *1 A. Yakushev, *2 Ch.E. Düllmann, *1,*2,*3 H. Haba, *4 M. Asai, *5 T.K. Sato, *5 H. Brand, *2 A. Di Nitto, *3 R. Eichler, *6,*7

F.L. Fan,*8 W. Hartmann,*2 M. Huang,*4 E. Jäger,*2 D. Kaji,*4 J. Kanaya,*4 Y. Kaneya,*5 J. Khuyagbaatar,*1 B. Kindler,*2

J.V. Kratz,^{*3} J. Krier,^{*2} Y. Kudou,^{*4} N. Kurz,^{*2} B. Lommel,^{*2} S. Miyashita,^{*5,*9} K. Morimoto,^{*4} K. Morita,^{*4,*10}

M. Murakami,^{*4,*11} Y. Nagame,^{*5} H. Nitsche,^{*12,*13} K. Ooe,^{*11} Z. Qin,^{*8} M. Schädel,^{*5} J. Steiner,^{*2} T. Sumita,^{*4} M. Takeyama,^{*4} K. Tanaka,^{*4} A. Toyoshima,^{*5} K. Tsukada,^{*5} A. Türler,^{*6,*7} I. Usoltsev,^{*6,*7} Y. Wakabayashi,^{*4} Y. Wang,^{*8} N. Wiehl,^{*1,*3}

S. Yamaki,*4,*14

Gas phase chemical studies of the superheavy elements have been limited to simple inorganic compounds so far.¹⁾ Due to challenging experimental conditions, access to other compound classes was limited. With the combination of physical preseparation with gas-phase chemistry techniques, parts of the experimental limitations could be overcome.²⁻³⁾

We succeeded in the synthesis of the first carbonyl complex of a superheavy element, namely seaborgium hexacarbonyl $(Sg(CO)_6)$, at the GAs-filled Recoil Ion Separator GARIS⁴⁾. Sg(CO)₆ has been predicted to be stable⁵⁾ and its adsorption behavior on SiO₂ surface is expected to be very similar to that of $W(CO)_6^{6}$. We therefore investigated $Sg(CO)_6$ along with $W(CO)_6$. Short-lived ¹⁶⁴W, and ~10-s ²⁶⁵Sg were synthesized in the reactions ¹⁴⁴Sm(²⁴Mg,4n)¹⁶⁴W and ²⁴⁸Cm(²²Ne,5n)²⁶⁵Sg. The evaporation residues (EVRs) were separated from the primary beam and lighter transfer products within GARIS. At the focal plane of GARIS, a recoil transfer chamber (RTC) was installed. The EVRs passed the entrance window of the RTC and were thermalized in a He / CO atmosphere (~600 mbar) in the RTC. The free single ions of W and Sg reacted with CO, forming volatile complexes⁷). The RTC was flushed continuously, transporting volatile compounds through a 10-m long capillary to the Cryo Online Multidetector for Physics and Chemistry of the Transactinides COMPACT⁸⁾, a thermochromatography detector array. The chromatography channel is formed by 32 pairs of silicon PIN diodes covered with a SiO₂ surface, kept at temperatures between 22 °C and -140°C. Volatile compounds adsorb at a certain temperature on the detector surface. The deposition pattern compared with Monte Carlo Simulations MCS, which allowed determining the adsorption enthalpy $-\Delta H_{ads}$. W as well as Sg were trans-

Condensed from the article in Even et al. Science 345, 1491 (2014).

- *2 GSI Helmholtzzentrum für Schwerionenforschung GmbH.
- *3 Johannes Gutenberg-Universität Mainz.
- Nishina Center for Accelerator-Based Science, RIKEN. *5
- Advanced Science Research Center, JAEA.
- *6 University of Berne.
- *7 Paul Scherrer Institute
- *8 Institute of Modern Physics Lanzhou; Chinese Academy of Sciences.
- *9 Hiroshima University.
- *10 Kyushu University.
- *11 Niigata University.
- *12 University of California, Berkeley.
- *13 Lawrence Berkeley National Laboratory,.
- *14 Saitama University.

ported to COMPACT, hence, formed volatile compounds with the CO. In total 15 decay chains assigned to the decay of ²⁶⁵Sg plus three uncorrelated fission event assigned to originate from members of the 265Sg decay chain were observed under almost background free conditions at a total beam integral of 1.52·10¹⁹. Both, the W as well as the Sg complexes deposited mainly in the last third of the detector (see Fig. 1). The W chromatograms are in agreement with former experiments reported in ³⁾, where the transported species was assigned to W(CO)₆. The Sg species shows the same adsorption behavior on SiO2 as W(CO)6, which strongly supports the assignment to $Sg(CO)_6$ ⁷⁾. The experimental distribution and MCS are shown in Figure 1.

Fig. 1. Distribution of ¹⁶⁴W (upper graph) and ²⁶⁵Sg (bottom graphic). ¹⁶⁴W was measured at 1L/min; the lower panel shows a combined chromatogram of all observed Sg events (flow rates between 1 L/min and 2.2 L/min). The black curve shows the result of the MCS (after [7]).

References

- 1) A. Türler and V. Pershina: Chem. Rev. 113, 1237 (2013).
- 2) Ch.E. Düllmann: Eur. Phys. J. D 45, 75 (2007).
- 3) J. Even et al.: Inorg. Chem. 51, 6431 (2012).
- 4) K. Morita et al.: Nucl. Instr. Meth. B 70, 220 (1992).
- 5) C.S. Nash, B.E. Bursten: J. Am. Chem. Soc. 121, 10830 (1999).
- 6) V. Pershina, J. Anton: J. Chem. Phys. 138, 174301-6 (2013).
- 7) J. Even et al. Science 345, 1491 (2014).
- 8) A. Yakushev et al., Inorg. Chem. 53, 1624 (2014).

^{*1} Helmholtz-Institut Mainz