Particle identification for Sn region with SAMURAI

J. Yasuda,^{*1} M. Sasano,^{*2} R.G.T. Zegers,^{*3} H. Baba,^{*2} W. Chao ,^{*2} M. Dozono,^{*2} N. Fukuda,^{*2} N. Inabe,^{*2}

J. Fasuda, M. Sasaho, R.G.T. Zegers, M. Baba, W. Chao', M. Dozoho, N. Fukuda, N. Habe,
T. Isobe,^{*2} G. Jhang,^{*2,*13} D. Kamaeda,^{*2} T. Kubo,^{*2} M. Kurata-Nishimura,^{*2} E. Milman,^{*2} T. Motobayashi,^{*2} H. Otsu,^{*2} V. Panin,^{*2} W. Powell,^{*2} M. Sako,^{*2} H. Sato,^{*2} Y. Shimizu,^{*2} L. Stuhl,^{*2} H. Suzuki,^{*2}
T. Suwat,^{*2} H. Takeda,^{*2} T. Uesaka,^{*2} K. Yoneda,^{*2} J. Zenihiro,^{*2} T. Kobayashi,^{*4} T. Sumikama,^{*4} T. Tako,^{*4} T. Nakamura,^{*5} Y. Kondo,^{*5} Y. Togano,^{*5} M. Shikata,^{*5} J. Tsubota,^{*5} K. Yako,^{*6} S. Shimoura,^{*6}
S. Ota,^{*6} S. Kawase,^{*6} Y. Kubota,^{*6} M. Takaki,^{*6} S. Michimasa,^{*6} K. Kisamori,^{*6} C.S. Lee,^{*6} H. Tokieda,^{*6}

M. Kobayashi,^{*6} S. Koyama,^{*7} N. Kobayashi, ^{*7} H. Sakai,^{*8} T. Wakasa,^{*1} S. Sakaguchi,^{*1} A. Krasznahorkay,^{*9}

T. Murakami, ^{*10} N. Nakatsuka, ^{*10} M. Kaneko, ^{*10} Y. Matsuda, ^{*11} D. Mucher, ^{*12} S. Reichert, ^{*12} D. Bazin, ^{*3} and J.W. Lee^{*13}

We performed the SAMURAI17 experiment¹) at RIKEN RIBF to study Gamow-Teller transition in ¹³²Sn by (p, n) reaction with the WINDS²⁾ and the SAMURAI spectrometer³). The SAMURAI spectrometer was used for tagging (p, n)-reaction events with the particle identification (PID) of the beam heavy fragments. The PID was performed with the TOF- $B\rho$ - ΔE method. Here we report the preliminarily results on the PID.

Here, we used the ¹³²Sn beam run with empty-target cell at F13 and selected the non-reacted trigger events in order to estimate the resolution of TOF, $B\rho$ and ΔE . The beam rigidity was measured by the BigRIPS with a typical momentum resolution of $R/\sigma_R \sim 3000$.

The TOF was measured by using the plastic scintillators SBT1,2 and the HODS with flight path length $L \simeq 12.5$ m. The HODS consists of 6 plastic scintillation counters with size of 450 mm \times 100 mm \times 5 mm. The obtained TOF resolution is $\sigma_t = 62.1 \pm$ 2.7(stat.) ps, where the statistical uncertainty is indicated. It should be noted that the non-uniformity of SBT1 thickness is as large as about 20 % which corresponds to 1 MeV/nucleon energy loss difference for 200 MeV/nucleon ¹³²Sn beam. In this analysis we gated the central position of SBT1 to estimate the TOF resolution, by using tracking information from $BDC1, 2^{3}$ drift chamber which were placed between SBT1,2 and the target. In the following the resolution was estimated with the same manners.

The energy loss ΔE was measured by HODS. The ΔE is sensitive to the HODS thickness. In this experiment the non-uniformity of HODS thickness is about 10-20% for 6 counters. In order to correct the thickness dependence, we used the tracking information

- *4Department of Physics, Tohoku University
- *5Tokyo Institute of Technology
- *6 CNS, University of Tokyo
- *7 University of Tokyo
- *8 ULIC, RIKEN Nishina Center
- *9 MTA, Atomki
- *10Kvoto University
- *¹¹ Konan University
- *12 Technical University Munich
- *¹³ Department of Physics, Korea University

from $FDC2^{3}$ drift chamber which was placed after the SAMURAI spectrometer. The obtained ΔE resolution is $\sigma_{\Delta E} / \Delta E = 0.43 \pm 0.03 (\text{stat.}) \%$.

The rigidity was analyzed by using four drift chambers BDC1,2, FDC1 and $FDC2^{3}$). The obtained rigidity resolution is $R/\sigma_R = 1318 \pm 27$ (stat.).

Figure. 1(a) shows the PID spectrum with respect to atomic number Z and mass to charge ratio A/Q. The Z resolution is $\sigma_Z = 0.22$ corresponding to 4.6σ separation for Z=50 and 51. The A/Q resolution is $\sigma_{A/Q} = 0.14$ % for ¹³²Sn⁵⁰⁺ which corresponds to 5.4 σ separation.

Fig. 1. (a) A SAMURAI PID spectrum with respect to Zand A/Q for non-reacted events with empty target cell. (b) Z distribution for all beam component and (c) A/Qdistribution for Sn isotopes. The resolution of Z and A/Q are $\sigma_Z = 0.22$ and $\sigma_{A/Q} = 0.14\%$ for ¹³²Sn⁵⁰⁺, respectively.

References

- 1) M. Sasano et al., : in this report.
- 2) J. Yasuda et al.,: in this report.
- 3) T. Kobayashi et al., Nucl. Instr. Meth. B317, 294 (2013).

^{*1} Department of Physics, Kyushu University

^{*2} **RIKEN** Nishina Center

^{*3} NSCL Michigan State University