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Z. Li,∗7 M. Niikura,∗1 P.-A. Söderström,∗2 T. Sumikama,∗8 J. Taprogge,∗9,∗10,∗2 Zs. Vajta,∗11,∗2

H. Watanabe,∗12 J. Wu,∗7,∗2 A. Yagi,∗13 K. Yoshinaga,∗14 H. Baba,∗2 S. Franchoo,∗15 T. Isobe,∗2 P. R. John,∗16

I. Kojouharov,∗17 S. Kubono,∗2 N. Kurz,∗17 I. Matea,∗15 K. Matsui,∗1 D. Mengoni,∗16 P. Morfouace,∗15

D. R. Napoli,∗18 F. Naqvi,∗19 H. Nishibata,∗13 A. Odahara,∗13 E. Şahin,∗20 H. Sakurai,∗1,∗2 H. Schaffner,∗17
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In order to study the nuclear shell evolution around
78Ni, the β-decay half-lives of neutron-rich nuclei, i.e.,
76,77Co, 79,80Ni and 81Cu were measured for the first
time. The experiment was performed as part of an EU-
RICA campaign at the RIBF facility, RIKEN in 2012.
A high-intensity 238U beam was accelerated up to an
energy of 345 A MeV by the RIKEN cyclotron accel-
erator complex before hitting a 3-mm-thick beryllium
target to produce secondary beams via in-flight fission.
The 238U86+ beam was delivered at an average current
of 5 pnA to the production target position. During the
13 days of the experiment, about 1.2× 104 78Ni nuclei
were identified and delivered to the experimental decay
station at the end of the ZeroDegree spectrometer.
Figure 1 shows the experimental results (solid sym-

bols) and the values in the literature (open symbols)
as a function of the neutron number. Due to the fifth
power relation between the half-life and its Qβ value,
a linear relationship between log10 T1/2 and the neu-
tron number of the parent nucleus is expected phe-
nomenologically when Qβ evolves smoothly in an iso-
topic chain. In Fig. 1 this linearity is clearly visible
below N = 50. Beyond that, a sudden reduction is
seen in the Z = 28 isotopic chain due to the shorter
half-lives of 79,80Ni with reference to the systematics
at N ≤ 50. The fast β-decay processes in 79,80Ni could
be attributed to the neutrons outside the N = 50 shell,
which result in higher Qβ values and β-decay rates of
79,80Ni compared to that of 78Ni.
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Fig. 1. Experimental half-lives as a function of neutron

number for isotopes with Z = 27 − 31. All the solid

symbols represent the half-lives determined in this work

while the open symbols are the half-lives taken from the

literature1–4). The systematic trends in the different

isotopic chains are highlighted by lines connecting the

data points with a smaller uncertainty.

In addition, a large gap can be noticed in Fig. 1
between the half-lives of the Co and Ni isotopes from
N = 44 to N = 50. According to shell model calcu-
lations, this can be explained by the filled proton f7/2
single particle orbit (SPO) in Ni isotopes. In this case,
the proton produced in the β decay of Ni isotopes fills
the πf5/2 SPO above πf7/2, leading to a reduction of
the Qβ value and longer half-lives of Ni isotopes than
those of Co isotopes. The newly measured half-lives of
76,77Co follow the decreasing trend with considerable
gaps relative to those of the corresponding Ni isotones,
indicating an almost constant Z = 28 shell gap with-
out significant quenching up to N = 50.
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around N=100†
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The deformation of nuclei around A = 160 may
influence the elemental abundances in the rare earth
element peak. Macroscopic-microscopic calculations
show a deformation maximum close to N = 104 and
Z = 66 (170Dy)1). However, these calculations seem to
be contradicted by recent experimental data2,3). We
utilise the existence of K isomers in this deformed re-
gion, to reveal the low-lying excited states in A ≈ 160
nuclei that can provide insight into their deformation.
Neutron-rich Z = 62, 64 isotopes were produced by

in-flight fission of a 345 A·MeV 238U beam with an
average beam intensity of 10 pnA incident on a 9Be
target at the RIBF. The secondary RI beam contain-
ing the nuclei of interest is passed through BigRIPS
and the ZeroDegree spectrometers that separate and
identify the beam species on an ion by ion basis, using
TOF, Bρ and ∆E. The ions of interest were implanted
in a stopper and the γ rays emitted following isomeric
decay were detected using EURICA (Euroball-RIKEN
Cluster Array): 84 HPGe crystals arranged in a 4π
configuration around the stopper.
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Fig. 1. Level scheme of 166Gd obtained in this work.

The decay from isomeric states in 166Gd and 164Sm
(N = 102) has been detected for the first time. The
half-lives of the isomeric states have been measured to
be 950(60) ns and 600(140) ns for 166Gd and 164Sm re-
spectively. Their level schemes, seen in Figs. 1 and 2,
were deduced from γ-γ coincidence analysis. Potential
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Fig. 2. Level scheme of 164Sm obtained in this work.

energy surface calculations4) with total energy min-
imised in (β2, β4, β6) deformation space and γ = 0 sug-

gest a 6− state with a 2-neutron ν 5
2

−
[512] ⊗ ν 7

2

+
[633]

configuration is isomeric in both 166Gd and 164Sm.
A key feature of our results are the first 2+ and 4+

energies. The systematics of E(2+) and E(4+ → 2+)
are shown in Fig. 3. The observed 2+ and 4+ energies
of 166Gd and 164Sm are the lowest in their isotopic
chains and of the N = 102 isotones, suggesting they
are the most deformed N = 102 nuclei observed in this
region to date. Our new points in the systematics also
highlight the increase of E(2+) and E(4+ → 2+) at
N = 100. This behaviour supports the appearance of
a recently predicted deformed shell gap at N = 1005)

that will influence r-process abundance calculations.
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Fig. 3. Systematics of E(2+) and E(4+ → 2+) for Sm, Gd,

Dy, Er and Yb isotopes. All data points from ENDSDF

and this work.
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