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The de Sitter space is a very interesting space-time.
It is a solution of Einstein equation when cosmological
constant dominates, and it is related to the inflationary
stage of our universe, as well as to the current stage
of accelerating universe. A peculiar property of the de
Sitter space is that the de Sitter invariant vacuum is
not unique; it has a one-parameter family of invariant
vacuum states |α〉, called α-vacua1,2).
The α-vacua give very peculiar behavior for the two

point functions in the de Sitter space; the two-point
functions on α-vacua between points x and y contain
not only the usual short distance singularity δ(|x− y|),
where |x− y| is the de Sitter invariant distance be-
tween x and y, but also contain very strange singu-
larity such as δ(|x− ȳ|) and δ(|x̄− y|), where x̄ and ȳ
represent the antipodal points of x and y, respectively.
Since antipodal points in the de Sitter space are not
physically accessible due to the separation by a hori-
zon, one cannot have an immediate reason to discard
two-point functions containing such an antipodal sin-
gularity. It is therefore unclear which vacuum should
be realized in our universe. As a result, a number of
studies have been done on phenomenological aspects of
the α-vacua (e.g. primordial perturbations generated
during inflation).
Since which vacuum one should choose is always a

very important question, one is motivated to calculate
physical quantities not only in a particular vacuum but
also in others, and see if there is a big reason to choose
or discard a particular vacuum.
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Fig. 1. Plot of SEE/V against ν, for α = 0 (red), 0.1 (or-

ange), 0.25 (yellow), 1 (green) and 2 (blue). Notice the

periodicity and reflection symmetries.

In this work, we computed the entanglement entropy
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Fig. 2. Plot of SEE/V against α, for ν = 0 (red), 0.25

(orange), νc = 0.4062 . . . (green), 0.43 (blue) and 0.5

(purple).

in de Sitter α-vacua. By generalizing the recent calcu-
lation by Maldacena and Pimentel3) in the Euclidean
(or Bunch-Davies) vacuum for free scalar fields, we de-
rived how entanglement entropy depends on α. The
results are shown in Fig. 1 and Fig. 2.

As is seen in Fig. 2, the entanglement entropy in-
creases significantly as we take α very large for generic
values of ν. However only for ν = 1/2 and 3/2, this
tendency disappears. Note that ν = 1/2 is the confor-
mal mass and ν = 3/2 is massless. It is interesting to
understand more physically why such a mass depen-
dence occurs.

Our calculation is done for the free scalar field.
Therefore direct comparison with the holographic cal-
culation for the Euclidean vacuum3) is difficult. It
must be interesting to ask how the calculation of en-
tanglement entropy on the α-vacua can be done in
the strong coupling limit via holography, a la Ryu-
Takayanagi formula4). Understanding these will hope-
fully shed more light on the question of which vacuum
one should choose in the de Sitter space. We hope to
come back to this question in near future.
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Transverse single-spin asymmetries in prompt photon production
from proton-proton collisions†
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Collinear twist-3 factorization has been used since
the 1980s in order to describe transverse single-spin
asymmetries AN . For a general process A↑B → C X,
the cross section can be written as the sum of three
terms depending on which non-perturbative function is
kept at twist-3. For hadron production, which has been
intensely studied for close to 40 years, the distribution
and fragmentation contributions to the cross section
cannot be disentangled, i.e., all of them are summed
together in the cross section. For many years it was of-
ten assumed that the piece involving the so-called Qiu-
Sterman (QS) function GF (x, x) was the main cause of
Aπ

N . However, this led to a so-called “sign mismatch”
between the QS function and the transverse momen-
tum dependent (TMD) Sivers function extracted from
semi-inclusive deep-inelastic scattering (SIDIS)1). Re-
cently we showed in 2) for the first time that the frag-
mentation contribution in collinear twist-3 factoriza-
tion actually can describe Aπ

N very well. By using a
Sivers function fully consistent with SIDIS, we demon-
strated that this mechanism could also resolve the sign-
mismatch puzzle. Nevertheless, an independent ex-
traction of GF (x, x), through observables like Ajet

N and
Aγ

N , is crucial to confirm this assertion. However, one
must keep in mind that for Ajet

N and Aγ
N other twist-3

distribution effects can enter besides the QS function.
Thus, in order to have a “clean” extraction of GF (x, x),
it would be ideal if these other terms were small.

Therefore, we return to the SSA in p↑p → γX
to see if this reaction could provide such an observ-
able. In twist-3 collinear factorization, Aγ

N has contri-
butions from multiparton correlators inside either the
transversely polarized proton or the unpolarized pro-
ton. For this process the former has been widely dis-
cussed in the literature for both (twist-3) quark-gluon-
quark3–10) and tri-gluon11) non-perturbative functions,
which are chiral-even objects evaluated at either soft-
gluon or soft-fermion poles (SGPs/SFPs). The full
result for twist-3 effects on the side of the unpolar-
ized proton is a new piece from this work and, al-
though we refrain from showing the explicit formula
for brevity, will be included in our numerical analy-
sis. This term involves a chiral-odd quark-gluon-quark
correlator EF (x, x), which is related to the TMD Boer-
Mulders function.

We now focus on the phenomenology. For the SGP
correlators EF (x, x) and GF (x, x) we make use of iden-
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Fig. 1. Aγ
N vs. xF at fixed η = 3.5 and

√
S = 510 GeV.

tities that relate the first to the Boer-Mulders function
and the second to the Sivers function. Since at this
point no information on the SFP functions is available,
we assume the relation GF (0, x)+G̃F (0, x) = GF (x, x).
Model calculations of quark-gluon-quark correlators
show that chiral-even SFP functions are much smaller
as compared to the SGP one and might even vanish.
Therefore, we believe that this ansatz is reasonable.

In Fig.1 we show an estimate of Aγ
N (along with an

uncertainty band) from all these pole contributions for
a set of kinematics relevant for the measurement of
this observable at PHENIX and STAR. One sees that
the entire effect is due to the “Sivers-type” QS mecha-
nism. Using the Sivers function extracted from SIDIS,
our results show that Aγ

N could be on the order of sev-
eral (negative) percent in the forward region, provid-
ing a “clean” observable to extract of the QS function
GF (x, x). In light of the “sign-mismatch” crisis in-
volving GF (x, x) and the Sivers function1), and the re-
cently proposed solution to this issue that relies on the
twist-3 fragmentation mechanism2), such an extraction
is of vital importance. In addition, one can obtain im-
portant information on the process dependence of the
Sivers function as well as help discriminate between
the Generalized Parton Model and twist-3 formalisms
since the former predicts a positive asymmetry. Thus,
measurements of this process by PHENIX and STAR
are crucial.
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