Theoretical analysis of $\Lambda(1405) \rightarrow (\Sigma \pi)^0$ mass spectra produced in $p + p \rightarrow p + \Lambda(1405) + K^+$ reactions

M. Hassanvand,^{*1,*2} S. Z. Kalantari,^{*2} Y. Akaishi,^{*1,*3} and T. Yamazaki ^{*1,*4}

Fig. 1. (Color online) (Upper) Comparison of HADES data $(\Sigma^+\pi^- + \Sigma^-\pi^+, \text{ closed squares})$ at $T_p = 3.50 \text{ GeV}^{?)}$ with best-fit theoretical spectral functions S(x). a) Best-fit HKAY curves (with $\chi^2 = 9.5, M = 1405^{+11}_{-9}$ MeV/c^2 and $\Gamma = 62 \pm 10 \text{ MeV}$). b) AY model with the PDG parameters (with $\chi^2 = 14, M = 1405.1^{+1.3}_{-1.0}$ MeV/c^2 and $\Gamma = 50 \text{ MeV}^{6}$). The Chiral model using HW's T_{21} (with $\chi^2 = 111$, c)) and T_{22} (with $\chi^2 = 40$, d)). (Lower) Confidence level contours from χ^2 fitting of the HADES data of $\Sigma^+\pi^- + \Sigma^-\pi^+$ at $T_p = 3.50 \text{ GeV}$. The PDG12 values are also shown.

We formulated the $\Lambda(1405)$ (abbreviated as Λ^*) $\rightarrow (\Sigma \pi)^0$ invariant-mass spectra produced in $p + p \rightarrow$ $p+\Lambda^*+K^+$ reactions, in which both the incident channel for a quasi-bound K^-p state and its decay process to $(\Sigma\pi)^0$ were taken into account realistically¹⁾. We calculated $M(\Sigma\pi)$ spectral shapes for various theoretical models for Λ^* . They are asymmetric and skewed, and were compared with recent experimental data of HADES². The nearly isotropic proton distribution observed in DISTO³⁾ and HADES is ascribed to a short collision length in the production of Λ^* , which justifies the high sticking mechanism of Λ^* and the participating proton into K^-pp^{4} .

In the present work we formulate the spectral shape of the $(\Sigma \pi)^0$ mass to provide theoretical guides to analyze experimental data of $(\Sigma \pi)^0$ mass spectra from the above reaction. We take into account both the formation and the decay processes of Λ^* in pp reactions realistically, following our $\bar{K}N - \Sigma\pi$ coupled-channel formalism⁵). In this way, we derive the general form of the spectral function, which is not symmetric, but skewed with respect to the pole position. Then, we analyzed $(\Sigma^{+-}\pi^{-+})^0$ spectra from HADES at $T_p = 3.50$ GeV²⁾, and obtained: $M(\Lambda^*) = 1405^{+11}_{-9} \text{MeV}/c^2$ and $\Gamma = 62 \pm 10$ MeV, where the interference effects of the $\bar{K}N$ - $\Sigma\pi$ resonance with I = 0 and $1 \Sigma\pi$ continuum are considered. Whereas the HADES spectrum shows a very broad peak centered around 1385 MeV/c^2 , significantly lower lying than 1405 MeV/c^2 , we have clarified that it is due to kinematical distortion. The present result on M and Γ is in good agreement with the PDG12 and PDG14 values⁶). The Hyodo-Weise (HW) spec tra^{7} , shown as the curves (c) and (d) in the figure, do not account for the experimental spectrum.

References

- M. Hassanvand, S.Z. Kalantari, Y. Akaishi and T. Yamazaki, Phys. Rev. C 87, 055202 (2013); Phys. Rev. C 88, 019905(E) (2013).
- G. Agakishiev *et al.* (HADES collaboration), Phys. Rev. C 87, 025201 (2013).
- 3) T. Yamazaki *et al.*, Phys. Rev. Lett. **104** (2010) 132502;
 P. Kienle *et al.*, Eur. Phys. J. A **48** (2012) 183.
- T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201.
- Y. Akaishi, Khin Swe Myint and T. Yamazaki, Proc. Jpn. Acad. B 84, (2008) 264.
- Particle Data Group 2012, J. Beringer *et al.*, Phys. Rev. D 86 (2012) 010001; Particle Data Group 2014, K.A. Olive *et al.*, Chin. Phys. C 38, 090001 (2014).
- T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Isfahan University of Technology

^{*&}lt;sup>3</sup> College of Science and Technology, Nihon University

^{*4} Department of Physics, University of Tokyo