Strong binding and shrinkage of single and double \overline{K} nuclear systems $(K^-pp, K^-ppn, K^-K^-p$ and $K^-K^-pp)$ predicted by Faddeev-Yakubovsky calculations

S. Maeda,^{*1} Y. Akaishi,^{*2,*3} and T. Yamazaki^{*2,*4}

nucleon interaction¹).

tion, were found to increase rapidly with the $\bar{K}N$ interaction strength. Their behaviors are shown in a reference diagram, Fig. 1, where possible changes by varying the $\bar{K}N$ interaction in the dense nuclear medium are given. Using the $\Lambda(1405)$ ansatz with a PDG mass of 1405 MeV/ c^2 for K^-p , the following ground-state binding energies together with the wave functions were obtained: 51.5 MeV (K^-pp) , 69 MeV (K^-ppn) , 30.4 MeV (K^-K^-p) and 93 MeV (K^-K^-pp) , which are in good agreement with previous results of variational calculation based on the Akaishi-Yamazaki coupledchannel potential²⁻⁵⁾. The K^-K^-pp state has a significantly increased density where the two nucleons are located very close to each other, in spite of the inner NNrepulsion. Relativistic corrections on the calculated non-relativistic results indicate substantial lowering of the bound-state masses, especially of K^-K^-pp , toward the kaon condensation regime. The fact that the recently observed binding energy of $K^-pp^{(7)}$ is much larger (by a factor of 2) than the originally predicted one may infer an enhancement of the $\bar{K}N$ interaction in dense nuclei by about 25%, possibly due to chiral symmetry restoration. In this respect some qualitative accounts are given based on "clearing QCD vacuum"

ing real separable potential models for the K^- - K^- and the K^- -nucleon interactions as well as for the nucleon-

The binding energies and spatial shrinkages of these

states, obtained for various values of the KN interac-

References

 See full description: S. Maeda, Y. Akaishi and T. Yamazaki, Proc. Jpn. Acad. Ser. B 89 (2013) 418.

model of Brown, Kubodera and Rho.⁸⁾

- Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 (2002) 044005.
- T. Yamazaki and Y. Akaishi: Phys. Lett. B 535 (2002) 70.
- 4) T. Yamazaki, A. Doté and Y. Akaishi, Phys. Lett. B 587 (2004) 167.
- T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201.
- 6) M. Agnello et al., Phys. Rev. Lett. 94 (2005) 212303.
- 7) T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) 132502.
- G.E. Brown, K. Kubodera and M. Rho, Phys. Lett. B 192 (1987) 273.

Fig. 1. Global view of the calculated bound-state energies

Non-relativistic Faddeev and Faddeev-Yakubovsky calculations were made for K^-pp , K^-ppn , K^-K^-p and K^-K^-pp kaonic nuclear clusters, where the quasi bound states were treated as bound states by employ-

⁽upper) and sizes (lower), $R_{\rm KNC}$ and R_{NN} of \bar{K} nuclear clusters as functions of the $\bar{K}N$ interaction strength, $s_{\bar{K}N}^{(I=0)}$, which is normalized so as to be -1 at the binding threshold. The zones of the standard " Λ (1405) ansatz" (s = -1.37) and the "Chiral" ansatz (s = -1.22) are shown by vertical broken lines. The experimental value of the mass of K^-pp as observed by DISTO⁷ is shown by a horizontal broken line, where a relativistic correction for the binding energy around 10 MeV is not taken into account.

^{*1} Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine.

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*&}lt;sup>3</sup> College of Science and Technology, Nihon University

^{*4} Department of Physics, University of Tokyo