Beta-decay properties of neutron-rich Zr isotopes studied by the Skyrme energy-density functional method[†]

K. Yoshida^{*1}

The study of unstable nuclei has been a major subject in nuclear physics for a couple of decades. The collective mode of excitation emerging in the response of the nucleus to an external field is a manifestation of the interaction among nucleons. Thus, the spinisospin channel of the interaction and the spin-isospin part of the energy-density functional (EDF), which is crucial for understanding and predicting the properties of unstable nuclei and asymmetric nuclear matter, have been studied in much detail, especially through Gamow-Teller (GT) strength distributions.

The GT strength distribution has been extensively investigated experimentally and theoretically not only because of interest in the nuclear structure but also because β -decay half-lives set a time scale for the rapidneutron-capture process (*r*-process), and hence determine the production of heavy elements in the universe. The *r*-process path is far away from the stability line, and involves neutron-rich nuclei. They are weakly bound and many of them are expected to be deformed according to the systematic Skyrme-EDF calculation¹.

Recently, β -decay half-lives of neutron-rich Kr to Tc isotopes with $A \simeq 110$ located on the boundary of the *r*-process path were newly measured at RIBF²). The ground-state properties such as deformation and superfluidity in neutron-rich Zr isotopes up to the drip line have been studied by employing the Skyrme-Hartree-Fock-Bogoliubov (HFB) method, and it has been predicted that Zr isotopes around A = 110 are well deformed in the ground states³).

To investigate the GT mode of excitation and β decay properties in the deformed neutron-rich Zr isotopes, we construct a new framework of the deformed HFB + proton-neutron QRPA employing the Skyrme EDF self-consistently in both the static and dynamic levels. Furthermore, the HFB equations are solved in real space for a proper description of the pairing correlations in weakly bound systems and coupling to the continuum states.

The T = 0 pairing interaction is effective for the GT excitation in systems where the ground states have the T = 1 pairing condensates. In the neutron-rich Zr isotopes under investigation, we find that the T = 0 pairing interaction enhances the low-lying GT strengths. The low-lying GT strength distribution strongly affects the β -decay rate. Thus, we can clearly see the

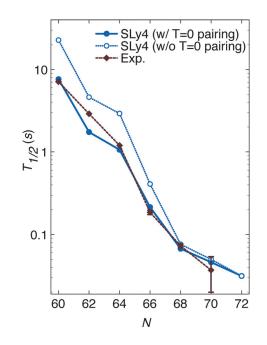


Fig. 1. Experimental and theoretical β -decay half-lives of the Zr isotopes, calculated by employing the SLy4 EDF combined with and without the T = 0 pairing interaction.

effect of T = 0 pairing in the β -decay life time. We can calculate the β -decay half-life $T_{1/2}$ with Fermi's golden rule by using the GT strength distributions microscopically obtained in the self-consistent pnQRPA framework.

Figure 1 shows the β -decay half-lives of the Zr isotopes calculated with the SLy4 EDF combined with and without the T = 0 pairing interaction. We see that the attractive T = 0 pairing interaction substantially shortens the β -decay half-lives. β -decay rates depend primarily on the Q_{β} value, the residual interactions in both the p-h and p-p channels, and the shell structures. The framework developed here self-consistently treats these key ingredients on the same footing. Once the strength of the T = 0 pairing interaction is determined so as to reproduce the observed β -decay half-life of 100 Zr, our calculation scheme well produces the isotopic dependence of the half-lives up to 110 Zr as was recently observed at RIBF.

References

- 1) M. V. Stoitsov et al.: Phys. Rev. C 68, 054312 (2003).
- S. Nishimura et al.: Phys. Rev. Lett. 106, 052502 (2011).
- 3) A. Blazkiewicz et al.: Phys. Rev. C 71, 054321 (2005).

[†] Condensed from the article in Prog. Theor. Exp. Phys. (2013) 113D02

^{*1} Graduate School of Science and Technology, Niigata University