Isomer spectroscopy of neutron-rich Nd isotopes

Mn. Tanaka,^{*1} E. Ideguchi,^{*1} G. Simpson,^{*2} R. Yokoyama,^{*3} S. Nishimura,^{*4} P. Doornenbal,^{*4} G. Lorusso,^{*4} P.-A.Söderström,^{*4} Z.Xu,^{*20} J.Wu,^{*4,*12} N. Aoi,^{*1} H. Baba,^{*4} F.Bello,^{*5} F. Browne,^{*4,*6} R. Daido,^{*7} Y. Fang,^{*7} N. Fukuda,^{*4} G. Gey,^{*2,*4,*8} S. Go,^{*3,*4} N. Inabe,^{*4} T. Isobe,^{*4} D. Kameda,^{*4} K. Kobayashi,^{*9} M. Kobayashi,^{*3} T. Komatsubara,^{*10} T. Kubo,^{*4} I. Kuti,^{*11} Z. Li,^{*12} M. Matsushita,^{*3} S. Michimasa,^{*3} C.-B. Moon,^{*13}

H. Nishibata,^{*7} I. Nishizuka,^{*14} A. Odahara,^{*7} Z. Patel,^{*4,*15} S. Rice,^{*15} E. Sahin,^{*5} L. Sinclair,^{*4,*16}

T. Sumikama,^{*14} H. Suzuki,^{*4} H. Takeda,^{*4} J. Taprogge,^{*17,*18} Zs. Vajta,^{*11} H. Watanabe,^{*19} and A. Yagi^{*7}

Prolate-deformed nuclei are found to appear in the neutron-rich part of the nuclear landscape around Z = 60 and beyond N = 90, after the systematic studies of excited states. In strongly deformed nuclei, quantum number K is known to be a good quantum number. Since transitions with large changes in K are suppressed, many nuclei in this region have isomeric states. In addition to the quadrupole deformation, appearances of higher-order deformations such as octupole and hexadecupole deformations have been predicted¹; however, they are not yet understood well. Isomer spectroscopy is a useful method to gain information on such structures of these nuclei.

Neutron-rich 60Nd isotopes have been investigated by means of isomeric γ -ray spectroscopy. Such isotopes were produced by the in-flight fission of 238 U at RI Beam Factory in RIKEN Nishina Center, and were selected and identified by using the BigRIPS separator. The identification of the nuclei was performed on the basis of the ΔE -TOF- $B\rho$ method, which allows an event-by-event determination of their atomic number and the mass-to-charge ratio, where ΔE , TOF, and $B\rho$ denote energy loss, time of flight, and magnetic rigidity, respectively. The identified particles were implanted into passive and active stoppers. A passive stopper made of Cu was used for the measurement at a high count rate, while the WAS3ABi²) active stopper consisting of five double-sided silicon strip detectors was used for the β - γ spectroscopy. Delayed γ rays were detected by the germanium cluster detector array EURICA³⁾. Gamma rays previously known from the

- ^{*1} Research Center for Nuclear Physics, Osaka University
- *² LPSC, Université Grenoble-Alpes, CNRS/IN2P3
- *³ Center for Nuclear Study, The University of Tokyo
- *4 RIKEN Nishina Center
- *5 University of Oslo
- *6 The University of Brighton
- ^{*7} Department of Physics, Osaka University
- *8 ILL, 38042 Grenoble Cedex
- *9 Department of Physics, Rikkyo University
- *¹⁰ University of Tsukuba
- *11 MTA Atomki
- *12 Peking University
- *¹³ Hoseo University
- *14 Department of Physics, Tohoku University
- *¹⁵ The University of Surrey
- *¹⁶ University of York
- $^{\ast 17}$ Instituto de Estructura de la Materia, CSIC
- $^{\ast 18}$ Universidad Autónoma de Madrid
- *¹⁹ Beihang University
- $^{\ast 20}$ Department of Physics, The University of Tokyo

Fig. 1. Gamma-ray energy spectra for ${}^{158}_{60}$ Nd₉₈ and ${}^{160}_{60}$ Nd₁₀₀. Marked peaks are the γ rays identified newly. The spread peak at \sim 700 keV comes from (n,n') reaction with Ge.

 5^- K-isomeric state of 156 Nd⁴⁾ were observed, and new K-isomeric states of heavier isotopes were discovered.

Figure 1 shows the γ -ray energy spectra of ¹⁵⁸Nd and ¹⁶⁰Nd using both the passive and active stopper data. We have observed three strong peaks at 151.6, 233.4, and 1198.2 keV for ¹⁵⁸Nd, and two strong peaks at 150.2 and 893.0 keV for ¹⁶⁰Nd. In both ¹⁵⁸Nd and ¹⁶⁰Nd, the half-lives of γ rays were preliminarily obtained as 0.339(20) μ s and 1.63(21) μ s, respectively. From the systematics of Nd isotopes, the energy of the first 2⁺ states will be around 70 keV. However, such low-energy γ transition is highly converted, and accordingly, the 70-keV peaks could not be observed. Further analysis to make spin-parity assignments based on the decay pattern and coincidence relations is now in progress.

References

- P. Möller et al.: Atomic Data and Nuclear Data Tables 59, 185 (1995).
- S. Nishimura et al.: RIKEN Accel. Prog. Rep. 46, 182 (2013).
- 3) S. Nishimura: Prog. Theor. Exp. Phys. 03C006 (2012).
- 4) G. S. Simpson et al.: Phys. Rev. C 80, 024304 (2009).