D. Murai,^{*1,*2} T. Kubo,^{*1} N. Inabe,^{*1} D. Kameda,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} H. Suzuki,^{*1} K. Yoshida,^{*1}
K. Kusaka,^{*1} K. Tanaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} T. Ohnishi,^{*1} H. Sato,^{*1} Y. Shimizu,^{*1} H. Baba,^{*1}
M. Kurokawa,^{*1} K. Ieki,^{*1,*2} D. Nishimura,^{*1,*3} E. Ideguchi,^{*4} S. Go,^{*1,*5} R. Yokoyama,^{*5} T. Fujii,^{*1,*5}
N. Iwasa,^{*1,*6} T. Yamada,^{*6} A. Chiba,^{*1,*6} S. Momota,^{*1,*7} H. Nishibata,^{*1,*8} O. B. Tarasov,^{*1,*9}

D. J. Morrissey,^{*1,*9} B. M. Sherrill,^{*1,*9} Y. Satou,^{*1,*10} S. Kim,^{*1,*10} J. W. Hwang^{*1,*10} and G. Simpson^{*11}

We have measured production yields by the in-flight fission of a 238 U beam at 345 MeV/nucleon with a Be target and a W target, and investigated the suitability of the targets for the production of neutron-rich nuclei with atomic numbers Z ranging from 57 to 69. The isotopes were produced and identified using the BigRIPS separator. Particles were identified by the $B\rho$ -TOF- ΔE method to determine Z and the mass-to-charge ratio A/Q.

Fig. 1. Particle identification plot of Z versus A/Q obtained with (a) the Be target and (b) the W target.

- *1**RIKEN** Nishina Center
- *2 Department of Physics, Rikkyo University
- *3 Faculty of Science and Technology, Tokyo University of Science
- *4 Research Center for Nuclear Physics, Osaka University
- *5Center of Nuclear Study, University of Tokyo
- *6 Department of Physics, Tohoku University
- *7School of Environmental Science and Engineering, Kochi University of Technology
- *8 Department of Physics, Osaka University
- *9 NSCL, Michigan State University
- *10Department of Physics and Astronomy, Seoul National University
- *11 LPSČ-IN2P3

The target thicknesses were 5 and 0.7 mm for the Be and W targets, respectively; these thickness were energy-loss equivalent. The BigRIPS setting was the same as the ¹⁶⁸Gd setting in the new-isotope-search experiment.¹⁾ The total rates were 79.9 counts/particle nA and 51.5 counts/particle nA for the Be and W targets, respectively. Figure 1 shows the Z versus A/Qplots for the Be and W targets. The resolutions of A/Q and Z are typically 0.045% and 0.45%, respectively. Figure 2 shows the production yield for each target. The squares and circles show the experimental data obtained with the Be and W targets, respectively. The result indicate that the production yield with the Be target is larger than that with the W target in the region where Z > 62.

Fig. 2. Measured production yields with the Be (squares) and W (circles) targets. (a) Results for even-Z isotopes. (b) Results for odd-Z isotopes.

The transmission of the BigRIPS separator is not taken into consideration in these results. We are proceeding with the analysis to deduce the production cross sections.

References

1) D. Kameda et al.: RIKEN Accel. Prog. Rep. 45, 117 (2012).