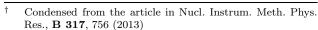
Production cross section measurements of radioactive isotopes by BigRIPS separator at RIKEN RI Beam Factory †


H. Suzuki,*¹ T. Kubo,*¹ N. Fukuda,*¹ N. Inabe,*¹ D. Kameda,*¹ H. Takeda,*¹ K. Yoshida,*¹ K. Kusaka,*¹ Y. Yanagisawa,*¹ M. Ohtake,*¹ H. Sato,*¹ Y. Shimizu,*¹ H. Baba,*¹ M. Kurokawa,*¹ T. Ohnishi,*¹ K. Tanaka,*¹ O. B. Tarasov,*^{1,*2} D. Bazin,*^{1,*2} D. J. Morrissey,*^{1,*2} B. M. Sherrill,*^{1,*2} K. Ieki,*^{1,*3} D. Murai,*^{1,*3} N. Iwasa,*^{1,*4} A. Chiba,*^{1,*4} Y. Ohkoda,*^{1,*4} E. Ideguchi,*⁵ S. Go,*^{1,*6} R. Yokoyama,*⁶ T. Fujii,*⁶ D. Nishimura,*^{1,*7} H. Nishibata,*^{1,*8} S. Momota,*^{1,*9} M. Lewitowicz,*¹⁰ G. DeFrance,*¹⁰ I. Celikovic,*¹⁰ and K. Steiger*¹¹

We have measured the production rates and production cross sections for a variety of radioactive isotopes which were produced from 124 Xe, 48 Ca, and 238 U beams at an energy of 345 MeV/nucleon using the BigRIPS separator¹⁾.

Proton-rich isotopes with atomic numbers Z=40-52 were produced by projectile fragmentation of the ¹²⁴Xe beam on a Be target, during which we also measured their momentum distributions. We found that the exponential tails at the low-momentum region fall off faster than those of the LISE⁺⁺²⁾ calculation with the original parameterization. The EPAX3.01 crosssection formula³⁾ agreed fairly well with the experimental cross sections. Furthermore, we have discovered four new isotopes on the proton-drip line, ^{85,86}Ru and ^{81,82}Mo. Figure 1 (a) shows a two-dimensional plot of Z versus mass-to-charge ratio (A/Q) in the ⁸⁵Ru setting. The four new isotopes were clearly identified on the left side of the solid lines, which indicate the limits of known isotopes. In the ¹⁰⁵Te setting, ¹⁰³Sb was not observed in our measurement, as shown in Fig. 1 (b). We obtained clear evidence that ¹⁰³Sb is particleunbound with a half-life upper limit of 49 ns.

Neutron-rich isotopes with Z=5-16 were produced by the projectile fragmentation of the ⁴⁸Ca beam on Be targets. The EPAX2.15 formula⁴⁾ reproduces the experimental cross sections fairly well.

Neutron-rich isotopes with Z=20-59 were produced by in-flight fission of a $^{238}\mathrm{U}$ beam on Be and Pb targets. The measured production rates were compared with the LISE⁺⁺ calculations, in which the abrasion fission (AF) model and the AF + Coulomb fission model were used for the $^{238}\mathrm{U}+\mathrm{Be}$ and $^{238}\mathrm{U}+\mathrm{Pb}$ cases,

^{*1} RIKEN Nishina Center

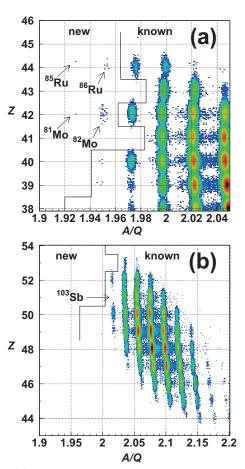


Fig. 1. (a) Enlarged two-dimensional PID plot of Z vs. A/Q for 85 Ru setting. 85,86 Ru and 81,82 Mo are the new isotopes. (b) PID plot for 105 Te setting.

respectively. In the former case, the LISE⁺⁺ calculations reproduced the experimental production rates well for the Z < 50 region but underestimated them for Z > 50. In the latter case, the LISE⁺⁺ predictions reproduce them fairly well overall.

References

- T. Kubo et al.: Nucl. Instrum. Meth. Phys. Res. B 204, 97 (2003)
- 2) O.B.Tarasov and D.Bazin: LISE⁺⁺ site, http://lise.nscl.edu, Michigan State University.
- 3) K. Sümmer: Phys. Rev. C 86, 014601 (2012).
- K. Sümmer and B. Blank: Phys. Rev. C 61, 034607 (2000).

^{*2} National Superconducting Cyclotron Laboratory, Michigan State University

^{*3} Department of Physics, Rikkyo University

^{*4} Department of Physics, Tohoku University

^{*5} Research Center for Nuclear Physics, Osaka University

^{*6} Center for Nuclear Study, University of Tokyo

^{*7} Department of Physics, Tokyo University of Science

^{*8} Department of Physics, Osaka University

^{*9} School of Environmental Science and Engineering, Kochi University of Technology

^{*10} Grand Accelerateur National d'Ions Lourds

 $^{^{*11}}$ Physik Department, Technische Universität München