Structure of neutron-rich Zr and Mo isotopes

T. Sumikama, ${ }^{* 1, * 3}$ F. Browne, ${ }^{* 2, * 3}$ A. M. Bruce, ${ }^{* 2}$ I. Nishizuka, ${ }^{* 1, * 3}$ S. Nishimura, ${ }^{* 3}$ P. Doornenbal, ${ }^{* 3}$
G. Lorusso, ${ }^{* 3}$ Z. Patel, ${ }^{* 3, * 4}$ S. Rice, ${ }^{* 3, * 4}$ L. Sinclair, ${ }^{* 3, * 5}$ P.-A. Söderström, ${ }^{* 3}$ H. Watanabe, ${ }^{* 3, * 6}$ J. Wu, ${ }^{* 3, * 7}$
Z. Y. Xu, ${ }^{* 3, * 8}$ A. Yagi, ${ }^{* 3, * 9}$ H. Baba, ${ }^{* 3}$ N. Chiga, ${ }^{* 1}$ R. Carroll, ${ }^{* 4}$ R. Daido, ${ }^{* 3, * 9}$ F. Didierjean, ${ }^{* 10}$ Y. Fang, ${ }^{* 3, * 9}$ G. Gey, ${ }^{* 3, * 11, * 12}$ E. Ideguchi, ${ }^{* 13}$ N. Inabe, ${ }^{* 3}$ T. Isobe, ${ }^{* 3}$ D. Kameda, ${ }^{* 3}$ I. Kojouharov, ${ }^{* 14}$ N. Kurz, ${ }^{* 14}$ T. Kubo, ${ }^{* 3}$ S. Lalkovski, ${ }^{* 15}$ Z. Li, ${ }^{* 7}$ R. Lozeva, ${ }^{* 10}$ N. Fukuda, ${ }^{* 3}$ H. Nishibata, ${ }^{* 3, * 9}$ A. Odahara, ${ }^{* 9}$ Zs. Podolyàk, ${ }^{* 4}$ P. H. Regan, ${ }^{* 4}$ O. J. Roberts, ${ }^{* 2}$ H. Sakurai, ${ }^{* 3, * 8}$ H. Schaffner, ${ }^{* 14}$ G. S. Simpson, ${ }^{* 11}$ H. Suzuki, ${ }^{* 3}$ H. Takeda, ${ }^{* 3}$ M. Tanaka, ${ }^{* 3, * 13}$ J. Taprogge, ${ }^{* 3, * 16, * 17}$ V. Werner, ${ }^{* 18}$ and O. Wieland ${ }^{* 19}$

Neutron-rich isotopes in the vicinity of ${ }^{110} \mathrm{Zr}$ have attracted much attention, because a shape transition to oblate or triaxial and a tetrahedral-shape isomer may be observed. ${ }^{1)}$ The decay spectroscopy of the Zr and Mo isotopes was performed at RIBF at RIKEN Nishina Center to extend the previous experiment ${ }^{1)}$ to more neutron-rich region. The neutron-rich nuclei were produced by the in-flight-fission reaction of ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u}$ in a 3 -mm-thick Be target, and implanted into the double-sided silicon-strip detectors (WAS3ABi), which were placed at the center of the high-purity-germanium detector array (EURICA). ${ }^{2)}$ A fast-timing $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array was combined with EURICA for a half-life measurement of excited states.

Figure 1 shows the particle-identification (PID) plot of the radioactive-isotope (RI) beam separated by the BigRIPS separator. The $\beta-\gamma$ spectroscopy of ${ }^{102,104} \mathrm{Y}$, and ${ }^{106} \mathrm{Nb}$ was performed individually by using a high-purity-beam setting. Figure 2 shows the PID spectrum of ${ }^{102}$ Y setting. The purity of ${ }^{102} \mathrm{Y}$ was 46%. A preliminary result of the half-life measurement for ${ }^{102,104} \mathrm{Zr}$ using the fast timing array is given in another report. ${ }^{3)}$ The beam setting shown in Fig. 3 is used to search for an isomeric state in ${ }^{110} \mathrm{Mo}$ using a passive Cu stopper. Further analysis is in progress.

[^0]

Fig. 1. PID plot of the atomic number Z and the mass to charge ratio A / Q. A wider and more-neutron-rich region than Figs. 2 and 3 was selected by the BigRIPS separator.

Fig. 2. PID plot of a high-purity-beam setting for the spectroscopic study of β decay from ${ }^{102} Y$.

Fig. 3. PID plot of a high-purity-beam setting to search for an isomeric state in ${ }^{110} \mathrm{Mo}$.

References

1) T. Sumikama et al.: Phys. Rev. Lett. 106, 202501 (2011).
2) S. Nishimura: Prog. Theor. Exp. Phys. 201203 C 006.
3) F. Browne et al.: RIKEN Accel. Prog. Rep. 47, (2014).

[^0]: *1 Department of Physics, Tohoku University
 *2 School of Physics and Nuclear Energy Engineering, University of Brighton
 *3 RIKEN Nishina Center
 *4 Department of Physics, University of Surrey
 *5 Department of Physics, University of York
 *6 School of Computing Engineering and Mathematics, Beihang University
 *7 Department of Physics, Peking University
 *8 Department of Physics, University of Tokyo
 *9 Department of Physics, Osaka University
 *10 IPHC/CNRS and University of Strasbourg
 *11 LPSC, Universitè Grenoble-Alpes, CNRS/IN2P3
 *12 ILL, Grenoble
 *13 RCNP, Osaka University
 *14 GSI
 *15 Department of Physics, Sofia University
 *16 Departamento de Física Teórica, Universidad Autónoma de Madrid
 *17 Institutode Estructura de la Materia
 *18 Department of Physics, Yale University
 *19 INFN Sezione di Mirano

