Structure of neutron-rich Zr and Mo isotopes

T. Sumikama,^{*1,*3} F. Browne,^{*2,*3} A. M. Bruce,^{*2} I. Nishizuka,^{*1,*3} S. Nishimura,^{*3} P. Doornenbal,^{*3} G. Lorusso,^{*3} Z. Patel,^{*3,*4} S. Rice,^{*3,*4} L. Sinclair,^{*3,*5} P.-A. Söderström,^{*3} H. Watanabe,^{*3,*6} J. Wu,^{*3,*7} Z. Y. Xu,^{*3,*8} A. Yagi,^{*3,*9} H. Baba,^{*3} N. Chiga,^{*1} R. Carroll,^{*4} R. Daido,^{*3,*9} F. Didierjean,^{*10} Y. Fang,^{*3,*9} G. Gey,^{*3,*11,*12} E. Ideguchi,^{*13} N. Inabe,^{*3} T. Isobe,^{*3} D. Kameda,^{*3} I. Kojouharov,^{*14} N. Kurz,^{*14} T. Kubo,^{*3} S. Lalkovski,^{*15} Z. Li,^{*7} R. Lozeva,^{*10} N. Fukuda,^{*3} H. Nishibata,^{*3,*9} A. Odahara,^{*9} Zs. Podolyàk,^{*4} P. H. Regan,^{*4} O. J. Roberts,^{*2} H. Sakurai,^{*3,*8} H. Schaffner,^{*14} G. S. Simpson,^{*11} H. Suzuki,^{*3} H. Takeda,^{*3} M. Tanaka,^{*3,*13} J. Taprogge,^{*3,*16,*17} V. Werner,^{*18} and O. Wieland^{*19}

Neutron-rich isotopes in the vicinity of 110 Zr have attracted much attention, because a shape transition to oblate or triaxial and a tetrahedral-shape isomer may be observed.¹) The decay spectroscopy of the Zr and Mo isotopes was performed at RIBF at RIKEN Nishina Center to extend the previous experiment¹) to more neutron-rich region. The neutron-rich nuclei were produced by the in-flight-fission reaction of ²³⁸U beam at 345 MeV/u in a 3-mm-thick Be target, and implanted into the double-sided silicon-strip detectors (WAS3ABi), which were placed at the center of the high-purity-germanium detector array (EURICA).² A fast-timing LaBr₃(Ce) array was combined with EU-RICA for a half-life measurement of excited states.

Figure 1 shows the particle-identification (PID) plot of the radioactive-isotope (RI) beam separated by the BigRIPS separator. The β - γ spectroscopy of ^{102,104}Y, and ¹⁰⁶Nb was performed individually by using a highpurity-beam setting. Figure 2 shows the PID spectrum of ¹⁰²Y setting. The purity of ¹⁰²Y was 46%. A preliminary result of the half-life measurement for ^{102,104}Zr using the fast timing array is given in another report.³⁾ The beam setting shown in Fig. 3 is used to search for an isomeric state in ¹¹⁰Mo using a passive Cu stopper. Further analysis is in progress.

- *³ RIKEN Nishina Center
- *4 Department of Physics, University of Surrey
- *⁵ Department of Physics, University of York
- *6 School of Computing Engineering and Mathematics, Beihang University
- *7 Department of Physics, Peking University
- *8 Department of Physics, University of Tokyo
- *9 Department of Physics, Osaka University
- *10 IPHC/CNRS and University of Strasbourg
- *11 LPSC, Universitè Grenoble-Alpes, CNRS/IN2P3
- $^{\ast 12}$ ILL, Grenoble
- *13 RCNP, Osaka University
- *14 GSI
- *¹⁵ Department of Physics, Sofia University
- *16 Departamento de Física Teórica, Universidad Autónoma de Madrid
- *¹⁷ Institutode Estructura de la Materia
- *18 Department of Physics, Yale University
- $^{\ast 19}$ INFN Sezione di Mirano

Fig. 1. PID plot of the atomic number Z and the mass to charge ratio A/Q. A wider and more-neutron-rich region than Figs. 2 and 3 was selected by the BigRIPS separator.

Fig. 3. PID plot of a high-purity-beam setting to search for an isomeric state in ¹¹⁰Mo.

References

- 1) T. Sumikama et al.: Phys. Rev. Lett. 106, 202501 (2011).
- 2) S. Nishimura: Prog. Theor. Exp. Phys. 2012 03C006.
- 3) F. Browne et al.: RIKEN Accel. Prog. Rep. 47, (2014).

^{*1} Department of Physics, Tohoku University

 ^{*2} School of Physics and Nuclear Energy Engineering, University of Brighton
*3 DIVEN Niching Conternation