Progress of study of β -decay of neutron-rich nuclei with $Z \sim 60$

J. Wu,^{*1,*2} S. Nishimura,^{*1} G. Lorusso,^{*1} Z.Y. Xu,^{*3} H. Baba,^{*1} F. Browne,^{*1,*4} R. Daido,^{*5} P. Doornenbal,^{*1} Y.F. Fang,^{*5} E. Ideguchi,^{*6} T. Isobe,^{*1} Z. Li,^{*2} A. Odahara,^{*5} Z. Patel,^{*1,*7} S. Rice,^{*1,*7} G. Simpson,^{*8} L. Sinclair,^{*1,*9} P.-A. Söderström,^{*1} T. Sumikama,^{*10} H. Watanabe,^{*11} A. Yagi,^{*5} R. Yokoyama,^{*12} N. Aoi,^{*6} F.L. Bello Garrote,^{*13} G. Benzoni,^{*14} G. Gey,^{*7} A. Gottardo,^{*15} G.D. Kim,^{*16} Y.K. Kim,^{*16} K. Kobayashi,^{*17} I. Kojouharov,^{*18} N. Kurz,^{*18} H. Nishibata,^{*5} H. Sakurai,^{*1} H. Schaffner,^{*18} M. Tanaka,^{*6} J. Taprogge,^{*19}

T. Yamamoto^{*5} and the EURICA collaboration

Approximately half of the elements heavier than iron are formed by the rapid neutron-capture process (rprocess). In the solar r-process abundance distribution, the region of rare-earth elements forms a peak around A = 160, which may have a different mechanism of formation compared with the other two distinct peaks at A = 130 and A = 195 relating to neutronclosed shells at N = 82 and N = 126, respectively¹). β -decay half-lives of the elements always play an important role at both the cold and hot *r*-process paths and will be expected to constrain the conditions in understanding the *r*-process nucleosynthesis.

To study the rare-earth peak, a β -decay experiment with $Z \sim 60$ was performed at the RIBF facility in June 2013. This experiment was carried out using the in-flight fission of a 345 MeV/nucleon 238 U beam colliding with a Be target. The secondary beam, including a cocktail of highly neutron-rich isotopes, was implanted in the β -decay counting system WAS3ABi ²⁾(Wide-range Active Silicon-Strip Stopper Array for Beta and ion detection), which consists of a stack of five highly segmented DSSSDs (Double-Sided Silicon Strip Detectors). With the help of the high-purity germanium detectors (EURICA)³⁾, γ rays with a high production rate emitted from implanted radioactive isotopes or the daughters nuclei fed through the β decay can be measured. The β -decay half-lives could be determined by fitting the distribution of the time difference between the implantations in the WAS3ABi and the following β -decay events.

In this experiment, approximately 35 half-lives were measured, including approximately 25 new half-lives.

- *3 Department of Physics, University of Tokyo
- *4 University of Brighton
- *5Department of Physics, Osaka University
- *6 Research Center for Nuclear Physics, Osaka University
- *7Department of Physics, University of Surrey
- *8 LPSC, France
- *9 Department of Physics, University of York
- *10 Department of Physics, Tohoku University
- *11Department of Physics, Beihang University
- $^{\ast 12}$ Center for Nuclear Study, University of Tokyo
- *13University of Oslo
- *14INFN.Milano
- *15 INFN, Legnaro
- *16 IBS
- ^{*17} Rikkyo University
- *18 GSI
- $^{\ast 19}$ Instituto de Estructura dela Materia

Figure 1 displays some preliminary results of four decay curves obtained in this experiment. Daughter halflives, granddaughter half-lives, as well as the constant background are taken into account by using the Likelihood fitting method. The β -decay half-lives can also be obtained by using β -delayed γ rays detected by the EURICA detector, which can eliminate the uncertainties from the daughter and granddaughter half-lives. Figure 2 shows the β -decay curve of ¹⁴⁹La gated the β -delayed γ rays.

Fig. 1. Decay curves of four kinds of isotopes (^{149}Ba , ^{149}La , $^{152}\mathrm{Ce},\,^{154}\mathrm{Pr})$ are displayed. The red lines correspond to parent nuclei. The blue curves, black curves, and green lines correspond to the daughter nuclei, granddaughter nuclei, and a constant background.

Fig. 2. $^{149}\mathrm{La}$ decay curve obtained gating on the $\beta\text{-delayed}$ γ -ray energy with 245.4keV.

In the latter phases of analysis, further new half-lives will be obtained. Simulation work of r-process will be performed by comparing the theoretical calculations with our experimental results.

References

- 1) Matthew R. Mumpower et al, Phys. Rev. C 85, 045801 (2012).
- 2) S.Nishimura, G.Lorusso, Z.Xu et al., RIKEN Accel. Prog. Rep. 46, 182 (2013).
- 3) P.-A. Söderström et al.: JPS Conf. Proc. 1, 013046 (2014).

^{*1} **RIKEN** Nishina Center

^{*2} Department of Physics, Peking University