Progress of study of β-decay of neutron-rich nuclei with $Z \sim 60$

J. Wu, ${ }^{* 1, * 2}$ S. Nishimura, ${ }^{* 1}$ G. Lorusso, ${ }^{* 1}$ Z.Y. Xu, ${ }^{* 3}$ H. Baba, ${ }^{* 1}$ F. Browne, ${ }^{* 1, * 4}$ R. Daido, ${ }^{* 5}$ P. Doornenbal, ${ }^{* 1}$ Y.F. Fang, ${ }^{* 5}$ E. Ideguchi, ${ }^{* 6}$ T. Isobe, ${ }^{* 1}$ Z. Li, ${ }^{* 2}$ A. Odahara, ${ }^{* 5}$ Z. Patel, ${ }^{* 1, * 7}$ S. Rice, ${ }^{* 1, * 7}$ G. Simpson, ${ }^{* 8}$ L. Sinclair, ${ }^{* 1, * 9}$ P.-A. Söderström, ${ }^{* 1}$ T. Sumikama, ${ }^{* 10}$ H. Watanabe, ${ }^{* 11}$ A. Yagi, ${ }^{* 5}$ R. Yokoyama, ${ }^{* 12}$ N. Aoi, ${ }^{* 6}$ F.L. Bello Garrote, ${ }^{* 13}$ G. Benzoni, ${ }^{* 14}$ G. Gey, ${ }^{* 7}$ A. Gottardo, ${ }^{* 15}$ G.D. Kim, ${ }^{* 16}$ Y.K. Kim, ${ }^{* 16}$ K. Kobayashi, ${ }^{* 17}$
I. Kojouharov, ${ }^{* 18}$ N. Kurz, ${ }^{* 18}$ H. Nishibata, ${ }^{* 5}$ H. Sakurai, ${ }^{* 1}$ H. Schaffner, ${ }^{* 18}$ M. Tanaka, ${ }^{* 6}$ J. Taprogge, ${ }^{* 19}$ T. Yamamoto*5 and the EURICA collaboration

Approximately half of the elements heavier than iron are formed by the rapid neutron-capture process (r process). In the solar r-process abundance distribution, the region of rare-earth elements forms a peak around $A=160$, which may have a different mechanism of formation compared with the other two distinct peaks at $A=130$ and $A=195$ relating to neutronclosed shells at $N=82$ and $N=126$, respectively ${ }^{1)}$. β-decay half-lives of the elements always play an important role at both the cold and hot r-process paths and will be expected to constrain the conditions in understanding the r-process nucleosynthesis.

To study the rare-earth peak, a β-decay experiment with $Z \sim 60$ was performed at the RIBF facility in June 2013. This experiment was carried out using the in-flight fission of a $345 \mathrm{MeV} /$ nucleon ${ }^{238} \mathrm{U}$ beam colliding with a Be target. The secondary beam, including a cocktail of highly neutron-rich isotopes, was implanted in the β-decay counting system WAS3ABi ${ }^{2)}$ (Wide-range Active Silicon-Strip Stopper Array for Beta and ion detection), which consists of a stack of five highly segmented DSSSDs (Double-Sided Silicon Strip Detectors). With the help of the high-purity germanium detectors (EURICA) ${ }^{3)}$, γ rays with a high production rate emitted from implanted radioactive isotopes or the daughters nuclei fed through the β decay can be measured. The β-decay half-lives could be determined by fitting the distribution of the time difference between the implantations in the WAS3ABi and the following β-decay events.

In this experiment, approximately 35 half-lives were measured, including approximately 25 new half-lives.

[^0]Figure 1 displays some preliminary results of four decay curves obtained in this experiment. Daughter halflives, granddaughter half-lives, as well as the constant background are taken into account by using the Likelihood fitting method. The β-decay half-lives can also be obtained by using β-delayed γ rays detected by the EURICA detector, which can eliminate the uncertainties from the daughter and granddaughter half-lives. Figure 2 shows the β-decay curve of ${ }^{149} \mathrm{La}$ gated the β-delayed γ rays.

Fig. 1. Decay curves of four kinds of isotopes $\left({ }^{149} \mathrm{Ba},{ }^{149} \mathrm{La}\right.$, ${ }^{152} \mathrm{Ce},{ }^{154} \mathrm{Pr}$) are displayed. The red lines correspond to parent nuclei. The blue curves, black curves, and green lines correspond to the daughter nuclei, granddaughter nuclei, and a constant background.

Fig. 2. ${ }^{149}$ La decay curve obtained gating on the β-delayed γ-ray energy with 245.4 keV .

In the latter phases of analysis, further new half-lives will be obtained. Simulation work of r-process will be performed by comparing the theoretical calculations with our experimental results.

References

1) Matthew R. Mumpower et al, Phys. Rev. C 85, 045801 (2012).
2) S.Nishimura, G.Lorusso, Z.Xu et al., RIKEN Accel. Prog. Rep. 46, 182 (2013).
3) P.-A. Söderström et al.: JPS Conf. Proc. 1, 013046 (2014).

[^0]: *1 RIKEN Nishina Center
 *2 Department of Physics, Peking University
 *3 Department of Physics, University of Tokyo
 *4 University of Brighton
 *5 Department of Physics, Osaka University
 *6 Research Center for Nuclear Physics, Osaka University
 *7 Department of Physics, University of Surrey
 *8 LPSC, France
 *9 Department of Physics, University of York
 *10 Department of Physics, Tohoku University
 *11 Department of Physics, Beihang University
 *12 Center for Nuclear Study, University of Tokyo
 *13 University of Oslo
 *14 INFN,Milano
 *15 INFN,Legnaro
 *16 IBS
 *17 Rikkyo University
 *18 GSI
 *19 Instituto de Estructura dela Materia

