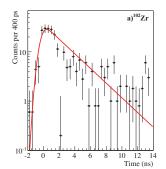
Lifetime measurements of excited states in $^{102, 104}$ Zr with a $LaBr_3(Ce)$ array

F. Browne,*1,*3 A. M. Bruce,*1 T. Sumikama,*2 S. Nishimura,*3 P. Doornenbal,*3 G. Lorusso,*3 Z. Patel,*3,*4 S. Rice,*3,*4 L. Sinclair,*3,*5 P.-A. Söderström,*3 H. Watanabe,*3,*6 J. Wu,*3,*7 Z. Y. Xu,*8 H. Baba,*3 N. Chiga,*2 R. Carroll,*4 R. Daido,*10 F. Didierjean,*11 Y. Fang,*10 N. Fukuda,*3 G. Gey,*12,*19,*3 E. Ideguchi,*10 N. Inabe,*3 T. Isobe,*3 D. Kameda,*3 I. Kojouharov,*13 N. Kurz,*13 T. Kubo,*3 S. Lalkovski,*14 Z. Li,*7 R. Lozeva,*11 I. Nishizuka,*2 H. Nishibata,*10 A. Odahara,*10 Zs. Podolyák,*4 P. H. Regan,*4 O. J. Roberts,*1 H. Sakurai,*3 H. Schaffner,*13 G. S. Simpson,*12 H. Suzuki,*3 H. Takeda,*3 M. Tanaka*10 J. Taprogge,*15,*16,*3 V. Werner,*17 O. Wieland,*18 and A. Yagi*10

Developments of novel scintillator materials have offered a step-change in performance characteristics of scintillation detectors for γ ray measurements. In particular, cerium-doped lanthanum tri-bromide (LaBr₃(Ce)) has proven to be a promising candidate for measuring lifetimes of low-lying excited nuclear states in the ps-to-ns range. Such information is a powerful tool in extracting, for example, nuclear deformations.


An array of 18 LaBr₃(Ce) detectors was installed at the F11 focal plane of the BigRIPS spectrometer, augmenting the existing EURICA array $^{(1)}$. In order to examine the performance of the LaBr₃(Ce) array, the known lifetimes of the 2_1^+ states in $^{102, 104}$ Zr were measured by means of β - γ spectroscopy. The parent nuclei were produced by the in-flight fission of a 345 MeV/A ²³⁸U beam on a 555 mg/cm³ thick ⁹Be target. The fission fragments were transported through BigRIPS and the ZeroDegree spectrometer before being implanted into the WAS3ABi active stopper (5 highly segmented DSSSDs), which lies between two plastic scintillators $(\beta$ -plastics). To correlate a β -decay event with an implanted ion, a signal in the same DSSSD pixel to the implant was required. A time condition was placed on the ion implantation to β -decay time to reduce contamination from granddaughter decays.

The level lifetime was obtained by measuring the time difference between the β -plastic, and a signal in

was added to the measured 2_1^+ lifetimes to account for the lifetimes of higher-lying levels. This was estimated from the time difference spectra for the $4_1^+ \to 2_1^+$ transitions. Figure 1 shows preliminary results of the background subtracted time difference spectra gated on the $2_1^+ \to 0_{g.s.}^+$ transitions, the energies of which are given in Tab. 1 along with the mean lifetime of the levels, which are in good agreement with literature values³⁾. The energy systematics indicate increased collective

the LaBr₃(Ce) array. A systematic uncertainty of 10%

The energy systematics indicate increased collectivity as N increases, however, the dependence of the transition probability on E_{γ} results in a longer lifetime for the 2_1^+ state in $^{104}{\rm Zr}$ than for $^{102}{\rm Zr}$. Future work will concentrate on a more complete characterisation of the low-energy background, the prompt-response function and the contribution of systematic uncertainties. The lifetimes of the 2_1^+ states of more exotic Zr isotopes will also be measured.

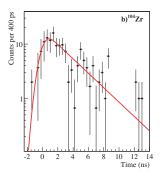


Fig. 1.: Preliminary, background subtracted time difference spectra for, a) 102 Zr and b) 104 Zr. The extracted mean lifetimes of the 2_1^+ states are listed below.

Table 1.: Comparison between τ values derived in this work and adopted values³⁾.

Nuclide	$\mathrm{E}(2_1^+) \; [\mathrm{keV}]$	τ [ns]	ENSDF τ [ns]
$^{-102}\mathrm{Zr}$	151.8(1)	2.7(3)	2.6(6)
$^{104}\mathrm{Zr}$	139.3(3)	3.2(3)	2.9(4)

*1 CEM, University of Brighton

References

- 1) P.-A. Söderström et~al., Nucl. Instr. and Meth. ${\bf B317},$ 649 (2013).
- 2) Z. Patel et al.: In this report.
- 3) Evaluated Nuclear Structure Data File, http://www.nndc.bnl.gov/ensdf

^{*2} Department of Physics, Tohuku University

^{*3} RIKEN Nishina Center

^{*4} Department of Physics, University of Surrey

^{*5} Department of Physics, University of York

^{*6} Beihang University

^{*7} Department of Physics, Peking University

^{*8} Department of Physics, University of Tokyo

^{*10} RCNP, Osaka University

^{*11} IPHC/CNRS and University of Strasbourg

 $^{^{\}ast 12}$ LPSC, UJF-INPG-IN2P3, Grenoble

 $^{^{*13}}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH

 $^{^{*14}}$ Department of Physics, Sofia University

^{*15} Departamento de Física Teórica, Universidad Autónoma de Madrid

 $^{^{*16}}$ Instituto de Estructura de la Materia

^{*17} Institut fuer Kernphysik, Technische Universitaet Darmstadt

^{*18} INFN Sezione di Milano

 $^{^{*19}}$ NPP, ILL, Grenoble