Search for new isotopes near the proton drip-line close to ¹⁰⁰Sn

I. Čeliković, *^{1,*2} M. Lewitowicz, *¹ R. Gernhäuser, *³ R. Krücken, *⁴ S. Nishimura, *⁵ H. Sakurai, *⁶ H. Baba, *⁵ B. Blank, *⁷ A. Blazhev, *⁸ P. Boutachkov, *⁹ F. Browne, *^{5,*10} G. de France, *¹ P. Doornenbal, *⁵ T. Faestermann, *³ Y. Fang, *¹¹ N. Goel, *⁹ M. Gorska, *⁹ S. Ilieva, *¹² T. Isobe, *⁵ A. Jungclaus, *¹³ G. D. Kim, *¹⁴ Y.-K. Kim, *¹⁴ I. Kojouharov, *⁹ N. Kurz, *⁹

G. Lorusso, *⁵ D. Lubos, *³ K. Moschner, *⁸ I. Nishizuka, *¹⁵ J. Park, *⁴ Z. Patel, *¹⁶ M. Rajabali, *⁴ S. Rice, *¹⁶ H. Schaffner, *⁹ L. Sinclair, *¹⁷ P. A. Söderström, *⁵ K. Steiger, *³ T. Sumikama, *¹⁵ Z. Wang, *⁴ H. Watanabe, *¹⁸ J. Wu, *¹⁹ and Z. Xu*⁶

The 100Sn nucleus, the heaviest doubly magic and particle-stable nucleus with N=Z, has been the subject of numerous experimental and theoretical studies. It is one of the most important nuclei for testing nuclear structure models.

Prior to the main ¹⁰⁰Sn experiment in 2013, we performed a test experiment in December 2011 with the aim of optimizing the configuration settings of the BigRIPS¹⁾ separator at RIKEN, for the production and selection of ¹⁰⁰Sn.²⁾ This experiment was subsequently used to set up our main ¹⁰⁰Sn experiment, which was performed in June 2013 and was dedicated to the measurement of Gamow-Teller strength in the decay of ¹⁰⁰Sn to ¹⁰⁰In (see D. Lubos et al.³), to the mapping of the proton drip-line in the region of Te-Ru, and to the study of short-lived isomeric states in this region of the nuclear chart. In this contribution, we report on the search for new isotopes close to the drip-line in the Te-Ru region.

Nuclei around ¹⁰⁰Sn were produced by fragmentation of a 345 MeV/nucleon ¹²⁴Xe⁵²⁺ beam impinging on a 4-mm Be target. The average beam intensity was 30 pnA during 203 hours of data taking.

The nuclei were identified on an event-by-event basis through the $B\rho$ - ΔE - TOF method using the standard BigRIPS focal plane detectors. The nuclei of interest were implanted in a stack of 3 double-sided silicon strip detectors called WAS3ABi, followed by a stack of 10 single-sided silicon strip detectors used to measure the total energy of

- *2 Institute "Vinča", University of Belgrade
- *3 Physik Department E12, Technische Universität München
- *4 TRIUMF
- *5 **RIKEN** Nishina Center
- *6 Department of Physics, University of Tokyo
- *7 CENBG
- Institut für Kernphysik, University of Cologne
- GSI Darmstadt
- * 10 School of Computing, Engineering and Mathematics, Brighton University
- *11 Department of Physics, Osaka University
- * 12 Institut für Kernphysik, TU Darmstadt
- *13 IEM CSIC, Madrid
- *14 Rare Isotope Science Project, Institute for Basic Science
- *¹⁵ Department of Physics, Tohoku University
- *¹⁶ Department of Physics, University of Surrey
- *¹⁷ Department of Physics, University of York
- *18 Department of Physics, Beihang University
- *19 Department of Physics, Peking University

 β -particles emitted after the decay of the implanted nuclei. The implantation detectors were surrounded by the EURICA array consisting of 12 seven-element Ge cluster detectors and 18 LaBr₃ crystals for the detection of delayed γ-rays.

A confirmation of Z and A/O identification was achieved by the observation of the characteristic γ -lines of known isomers in ⁹⁸Cd and ⁹⁶Pd. The relative r.m.s. Z and A/Q resolutions for the Sn and N=Z isotopes were 0.41% and 0.09%, respectively. Available signals from the PPACs, plastic scintillators, and ionisation chambers were used to apply additional off-line gates, which allows the removal of spurious events from the particle identification plot.

Fig. 1. Particle identification matrix Z vs A/Q around the ¹⁰⁰Sn after applying cleaning conditions.

We have discovered 3 new isotopes with more than 3 counts: ⁹⁴Cd, ⁹²Ag, ⁹⁰Pd. The consistency of all measured signals of interest for each nucleus has been checked, and the assignment of these new isotopes is unambiguous. We have also tentatively assigned events to ¹⁰⁴Te, ⁹⁸Sn, ⁹⁶In observed with less than 3 counts. One event was assigned to ⁸⁶Ru, the identification of which has been recently reported by H. Suzuki.4)

References

- 1) T. Kubo: Nucl. Instr. Meth. Phys. Res. B 204 (2003) 97
- 2) M. Lewitowicz et al.: RIKEN Acc. Prog. Rep, Vol 45 (2011) p. vi.
- 3) D. Lubos et al.: RIKEN Acc. Prog. Rep (this volume).
- 4) H. Suzuki et al.: Nucl. Instr. Meth. Phys. Res. B 317 (2013) 756

^{*1} GANIL