Isolation of early-heading mutants induced by heavy-ion radiation in an Indonesian native rice cultivar

E. Hanzawa,^{*1} Y. Kazama,^{*1} Y. Hayashi,^{*2} T. Abe,^{*2,*3} A. Higashitani^{*1} and T. Sato^{*1,*2}

Rice is cultivated as far as 50° N in China and 40° S in Argentina.¹⁾ The period from seeding to heading is important for cultivation over a wide latitude. The heading time can be determined by the period of vegetative growth phase, from seedling to panicle primordium initiation, and reproductive phase, from panicle initiation to heading.²⁾ The vegetative growth phase consists of the basic vegetative phase (BVP) and photoperiod sensitive phase (PSP). Cultivated rice is classified as a short-day plant, and it exhibits a wide genetic diversity with respect to sensitivity to photoperiod ³⁾. Tanisaka et al. isolated a longer BVP mutant line induced by y-irradiation of seeds of the Japanese lowland rice cultivar 'Ginbozu' with a longer PSP and shorter BVP.³⁾ Indonesian rice cultivars belonging to the ecotype bulu have a shorter PSP and longer BVP.⁴⁾ The aim for this study was to isolate a shorter BVP mutant line induced by heavy-ion radiation.

Dry seeds of an Indonesian native rice cultivar (*Oryza sativa* L. 'Gemdjah Beton' belonging to the ecotype bulu) were irradiated with C-ions accelerated to 135 MeV/nucleon by (RRC) at a dose of 125 Gy in April 2011. LET values of the C-ions corresponded to 22.5 keV/µm.

In 2011, the M_1 seeds were sown in seedling trays at the end of April and grown in a greenhouse for 4 weeks. Field experiments were conducted in the paddy fields of the Experimental Farm Station, Graduate School of Life Sciences, Tohoku University, in Kashimadai, Osaki, Miyagi, Japan (37°28', 141°06'). A fertilizer was applied to the paddy fields at rates of 30 kg of N, P, and K/ha. We transplanted 3,000 seedlings (age, four weeks) into a single lot at the end of May. Plants were grown at a density of a plant per hill, with 30-cm spacing between hills. In the middle of September, more than 15 M_1 plants flowered one week earlier than the other M_1 plants and the wild-type 'Gemdjah Beton'. We sampled the M_2 seeds of these M_1 plants in the beginning of November.

In 2012, we planted the M_2 seeds of these selected lines at the end of April and then transplanted 50 seedlings per each line in a paddy field at the end of May. One mutant line flowered over about ten days earlier than the other M_2 lines and the wild-type in the middle of September. At the end of October, M_3 seeds of 26 plants were sampled in the M_2 line. In 2013, we randomly selected 10 M_3 lines from 26 M_3 lines and grew 50 plants of each M_3 line. The period from transplanting to the heading of wild-type was 17 weeks. Six M_3 lines exhibited the segregation from 15 to 17 weeks. The heading day of two M_3 lines was the same as that of the wild-type. All plants of another two M_3 lines showed heading two weeks earlier than the wild-type. Therefore, we succeeded in isolating early-heading mutant lines induced by heavy-ion radiation.

Seven loci that control the period of BVP were detected in cultivated rice.⁵⁾ We are currently attempting to determine the locus of the mutant gene that shortens the period of BVP in the mutant lines isolated in this study.

Fig. Early-heading M₃ mutant line (left) and wild-type (right) grown in a paddy field on October 18, 2013

References

- 1) D. A. Vaughan: *Wild relatives of rice. A Genetic resources handbook.* (IRRI, Philippines 1986).
- B. S. Vergara and T. T. Chang: *The flowering response of the rice plant to photoperiod*. *A review of the literature*. 4th Edition (IRRI, Philippines 1985).
- 3) T. Tanisaka et al.: Japan J. Breed. 42, 657 (1992).
- N. Takahashi: in Biology of Rice, edited by S. Tsunoda and N. Takahashi (Japan Scientific Societies Press, Tokyo, 1984), P 31.
- 5) Q. Yuan et al.: Theor. Appl. Genet. 119, 675 (2009)

^{*1} Graduate School of Life Sciences, Tohoku University

^{*2} RIKEN Nisina Center

^{*3} RIKEN Innovation Center