Study of unbound oxygen isotopes ²⁵O and ²⁶O using SAMURAI

Y. Kondo,^{*1,*2} T. Nakamura,^{*1,*2} N. L. Achouri,^{*3} T. Aumann,^{*4} H. Baba,^{*2} F. Delaunay,^{*3} P. Doornenbal,^{*2} N. Fukuda,^{*2} J. Gibelin,^{*3} J. W. Hwang,^{*5} N. Inabe,^{*2} T. Isobe,^{*2} D. Kameda,^{*2} D. Kanno,^{*1,*2} S. Kim,^{*5} N. Kobayashi,^{*1,*2} T. Kobayashi,^{*6,*2} T. Kubo,^{*2} S. Leblond,^{*3} J. Lee,^{*2} F. M. Marqués,^{*3} R. Minakata,^{*1,*2}

T. Motobayashi,^{*2} D. Murai,^{*7} T. Murakami,^{*8} K. Muto,^{*6} N. Nakatsuka,^{*8} T. Nakashima,^{*1,*2} A. Navin,^{*9}

S. Nishi,^{*1,*2} S. Ogoshi,^{*1,*2} N. A. Orr,^{*3} H. Otsu,^{*2} H. Sato,^{*2} Y. Satou,^{*5} Y. Shimizu,^{*2} H. Suzuki,^{*2}

K. Takahashi,^{*6} H. Takeda,^{*2} S. Takeuchi,^{*2} R. Tanaka,^{*1,*2} Y. Togano,^{*10,*13} A. G. Tuff,^{*11}

M. Vandebrouck,^{*12} and K. Yoneda^{*2}

Unbound states of the neutron-rich oxygen isotopes $^{25}\mathrm{O}$ and $^{26}\mathrm{O}$ have been studied by the invariant-mass method by using SAMURAI¹) with the aim to elucidate the mechanism of the neutron drip line anomaly in oxygen and fluorine isotopes. Another interesting topic is the possible two-neutron radioactivity of the ²⁶O ground state, predicted by a theoretical study.²⁾ Experimentally, only the upper limit of the groundstate energy^{3,4)} and lifetime with a large error⁵⁾ are currently available.

Details of the experimental setup are described in our previous report.⁶⁾ Figure 1 shows a mass identification plot of outgoing Z = 8 charged particles observed in the breakup of ²⁷F on a carbon target. Particle identification is performed by the $B\rho$ - ΔE -TOF technique. The magnetic rigidity $B\rho$ is determined by the positions and angles at the entrance and exit of the SAMURAI magnet measured by means of the MWDCs (BDC1,2 and FDC1,2). Combining the $B\rho$ value with energy loss ΔE and TOF measured by a plastic scintillator hodoscope (HODF), outgoing particles can be clearly identified. The mass resolution $\Delta A = 0.18$ (FWHM), corresponding to 13σ separation, is achieved for 24 O.

Figure 2 shows a preliminary decay energy spectrum of ${}^{24}\text{O}+n$ observed in the breakup of ${}^{27}\text{F}$. The sharp peak near the neutron decay threshold corresponds to the ²⁶O ground state and the peak at approximately 0.8 MeV corresponds to the ground-state resonance of ²⁵O. Since the obtained statistics is much larger than that obtained in the previous experiments, $^{3,4)}$ a better constraint on the ²⁶O ground-state energy can be

- *2 **RIKEN** Nishina Center
- *3 LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3
- *4Institut für Kernphysik, Technische Universität Darmstadt *5 Department of Physics and Astronomy, Seoul National Uni-
- versitv *6 Department of Physics, Tohoku University
- *7
- Department of Physics, Rikkyo University *8
- Department of Physics, Kyoto University *9
- GANIL, CEA/DSM-CNRS/IN2P3
- $^{\ast 10}$ Extre
Me Matter Institute (EMMI) and Research Division, GSI
- $^{\ast 11}$ Department of Physics, University of York
- *12 Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS
- $^{\ast 13}$ Present address: Department of Physics, Tokyo Institute of Technology

obtained. Analysis is currently in progress.

5000 4000 Counts 3000 2000 1000 0 21 22 23 24 Mass

Fig. 1. Mass spectrum of outgoing Z = 8 particles in the breakup of 27 F.

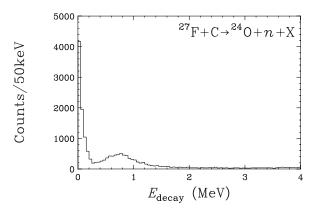


Fig. 2. Decay energy spectrum of ${}^{24}\text{O}+n$ in the breakup of 27 F.

References

- 1) T. Kobayashi et al.: Nucl. Instr. Meth. B. 317, 294 (2013).
- 2) L. V. Grigorenko et al.: Phys. Rev. C. 84, 021303 (2011).
- 3) E. Lunderberg et al.: Phys. Rev. Lett. 108, 142503 (2012).
- 4) C. Caesar et al.: Phys. Rev. C. 88, 034313 (2013).
- 5) Z. Kohly et al.: Phys. Rev. Lett. 110, 152501 (2013).
- 6) Y. Kondo et al.: RIKEN. Prog. Accel. Rep. 46, 6 (2013).

^{*1} Department of Physics, Tokyo Institute of Technology