# Energy resolution of a gas ionization chamber for high-energy heavy ions ${ }^{\dagger}$ 

Y. Sato, ${ }^{* 1}$ A. Taketani, ${ }^{* 1}$ N. Fukuda, ${ }^{* 1}$ H. Takeda, ${ }^{* 1}$ D. Kameda, ${ }^{* 1}$ H. Suzuki, ${ }^{* 1}$ Y. Shimizu, ${ }^{* 1}$ D. Nishimura, ${ }^{* 1, * 2}$ M. Fukuda, ${ }^{* 1, * 3}$ N. Inabe, ${ }^{* 1}$ H. Murakami, ${ }^{* 1}$ K. Yoshida, ${ }^{* 1}$ and T. Kubo ${ }^{* 1}$

Gas ionization chambers are used for the BigRIPS spectrometer to identify the atomic number of the flight particles by using the energy deposition. ${ }^{1,2)}$ Since the key parameter of the detector in this application is its energy resolution for heavy ions, an understanding of the energy resolution behavior of high-energy heavy ions is essential in discussing the particle identification performance. We report the energy resolution of the gas ionization chamber for heavy ions from the atomic number $Z=31$ up to $Z=52$ at low counting rates below 1 kcps , and which have an energy of nearly $340 \mathrm{MeV} /$ nucleon.

The ionization chamber is installed at the F7 focal plane of the BigRIPS ${ }^{1)}$ spectrometer, which is operated using a counting gas mixture of $\operatorname{Ar}(90 \%)+\mathrm{CH}_{4}(10 \%)$ at approximately 760 Torr. The effective gas thickness of 48 cm is divided into six segments, and energy spectra can be obtained for every 8 cm of gas thickness. ${ }^{2)}$ The dependence of energy resolution on the gas thickness is plotted in Fig. 1. As an example, we show the analysis results for ions $Z=38$ and $Z=51$. With the horizontal axis scaled as the inverse-square-root of the gas thickness, $L^{-1 / 2}$, a linear relationship is observed, as shown by the solid linear-fitting result lines; this observation is in good agreement with the experimental data. We conclude that the energy resolution is linearly dependent on $L^{-1 / 2}$. These results indicate that the energy resolution, $\Omega / \Delta E$, is expressed by statistical fluctuations in the energy loss, i.e., the energy straggling of heavy ions, $\Omega$, and the mean energy deposition within the gas, $\Delta E$, which are explained by the Bohr expression $(\Omega \propto$ $Z L^{1 / 2}$ ) and the Bethe-Bloch formula ( $\Delta E \propto Z^{2} L$ ), respectively. ${ }^{3,4)}$

In Fig. 2, we plot the energy resolution as a function of the heavy ion atomic number for the cases of $L=24 \mathrm{~cm} \equiv$ $L_{1}$ (open circles) and $L=48 \mathrm{~cm} \equiv L_{2}$ (solid circles). According to the Bohr expression $\Omega$ is also proportional to the incident ion atomic number, $Z$. Therefore, the energy resolution, $\Omega / \Delta E$, should be proportional to $Z^{-1}$ because $\Delta E$ $\propto Z^{2}$. The solid and dotted lines show the fitting results of $C Z^{-1}$, where $C$ is the fitting parameter. The best-fit parameters were found to be $C_{1}=61.2 \pm 1.2$ and $C_{2}=$ $43.5 \pm 1.0$ for $L_{1}$ and $L_{2}$, respectively. The ratio of these values is $C_{1} / C_{2}=1.41 \pm 0.04$, which shows excellent agreement with the value of $\left(L_{1} / L_{2}\right)^{-1 / 2} \approx 1.41$. This result is consistent with the above discussion, $\Omega / \Delta E \propto L^{-1 / 2}$.

In future works, the experimental energy resolution data for heavier ions up to uranium ( $Z=92$ ) are required to discuss the performance of the ionization chamber for the

[^0]

Fig. 1. Dependence of energy resolution on gas thickness obtained for heavy ions $Z=38$ (solid circles) and $Z=51$ (open circles). The solid lines are the results of linear fitting, which show the linear dependence on $L^{-1 / 2}$.


Fig. 2. Energy resolution as a function of the atomic number of fragment heavy ions produced from the in-flight fission of ${ }^{238} \mathrm{U}$ at $345 \mathrm{MeV} /$ nucleon. Open and solid circles represent the cases with $L=24 \mathrm{~cm}$ and $L=48 \mathrm{~cm}$, respectively. The solid and dotted lines are the results of the fitting of $Z^{1}$.
identification of these heavy ions. In addition, the performance at high counting rates up to 1 Mcps is still unclear and requires further investigation.

## References

1) T. Kubo, et al.: Prog. Theor. Exp. Phys. (2012) 03C003.
2) H. Otsu, et al.: RIKEN Accel., Prog. Rep. 42 (2009) 163.
3) N. Bohr: Philos. Mag. 30 (1915) 581.
4) G. F. Knoll: Radiation Detection and Measurement (Wiley, New York, 2000) 3rd ed., Chap. 2.

[^0]:    $\dagger$ Condensed from the article in Jpn. J. Appl. Phys. 53, 016401 (2014)
    *1 RIKEN Nishina Center
    *2 Faculty of Science and Technology, Tokyo University of Science
    *3 Department of Physics, Osaka University

