## Energy resolution of a gas ionization chamber for high-energy heavy ions<sup>†</sup>

Y. Sato, \*1 A. Taketani, \*1 N. Fukuda, \*1 H. Takeda, \*1 D. Kameda, \*1 H. Suzuki, \*1 Y. Shimizu, \*1 D. Nishimura, \*1,\*2

M. Fukuda,<sup>\*1,\*3</sup> N. Inabe,<sup>\*1</sup> H. Murakami,<sup>\*1</sup> K. Yoshida,<sup>\*1</sup> and T. Kubo<sup>\*1</sup>

Gas ionization chambers are used for the BigRIPS spectrometer to identify the atomic number of the flight particles by using the energy deposition.<sup>1,2)</sup> Since the key parameter of the detector in this application is its energy resolution for heavy ions, an understanding of the energy resolution behavior of high-energy heavy ions is essential in discussing the particle identification performance. We report the energy resolution of the gas ionization chamber for heavy ions from the atomic number Z=31 up to Z=52 at low counting rates below 1 kcps, and which have an energy of nearly 340 MeV/nucleon.

The ionization chamber is installed at the F7 focal plane of the BigRIPS<sup>1)</sup> spectrometer, which is operated using a counting gas mixture of Ar(90%)+CH<sub>4</sub>(10%) at approximately 760 Torr. The effective gas thickness of 48 cm is divided into six segments, and energy spectra can be obtained for every 8 cm of gas thickness.<sup>2)</sup> The dependence of energy resolution on the gas thickness is plotted in Fig. 1. As an example, we show the analysis results for ions Z=38and Z=51. With the horizontal axis scaled as the inverse-square-root of the gas thickness,  $L^{-1/2}$ , a linear relationship is observed, as shown by the solid linear-fitting result lines; this observation is in good agreement with the experimental data. We conclude that the energy resolution is linearly dependent on  $L^{-1/2}$ . These results indicate that the energy resolution,  $\Omega/\Delta E$ , is expressed by statistical fluctuations in the energy loss, i.e., the energy straggling of heavy ions,  $\Omega$ , and the mean energy deposition within the gas,  $\Delta E$ , which are explained by the Bohr expression ( $\Omega \propto$  $ZL^{1/2}$ ) and the Bethe-Bloch formula ( $\Delta E \propto Z^2L$ ), respectively.<sup>3,4)</sup>

In Fig. 2, we plot the energy resolution as a function of the heavy ion atomic number for the cases of L = 24 cm  $\equiv$  $L_1$  (open circles) and L = 48 cm  $\equiv L_2$  (solid circles). According to the Bohr expression  $\Omega$  is also proportional to the incident ion atomic number, Z. Therefore, the energy resolution,  $\Omega/\Delta E$ , should be proportional to  $Z^{-1}$  because  $\Delta E$  $\propto Z^2$ . The solid and dotted lines show the fitting results of  $CZ^{-1}$ , where C is the fitting parameter. The best-fit parameters were found to be  $C_1 = 61.2\pm 1.2$  and  $C_2 =$  $43.5\pm 1.0$  for  $L_1$  and  $L_2$ , respectively. The ratio of these values is  $C_1/C_2 = 1.41\pm 0.04$ , which shows excellent agreement with the value of  $(L_1/L_2)^{-1/2} \approx 1.41$ . This result is consistent with the above discussion,  $\Omega/\Delta E \propto L^{-1/2}$ .

In future works, the experimental energy resolution data for heavier ions up to uranium (Z=92) are required to discuss the performance of the ionization chamber for the

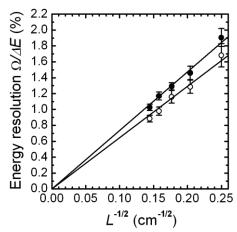



Fig. 1. Dependence of energy resolution on gas thickness obtained for heavy ions Z=38 (solid circles) and Z=51 (open circles). The solid lines are the results of linear fitting, which show the linear dependence on  $L^{-1/2}$ .

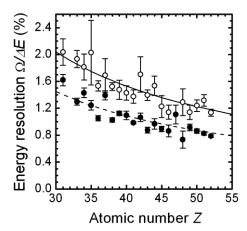



Fig. 2. Energy resolution as a function of the atomic number of fragment heavy ions produced from the in-flight fission of <sup>238</sup>U at 345 MeV/nucleon. Open and solid circles represent the cases with L=24 cm and L=48 cm, respectively. The solid and dotted lines are the results of the fitting of  $Z^{1}$ .

identification of these heavy ions. In addition, the performance at high counting rates up to 1 Mcps is still unclear and requires further investigation.

## References

- 1) T. Kubo, et al.: Prog. Theor. Exp. Phys. (2012) 03C003.
- 2) H. Otsu, et al.: RIKEN Accel., Prog. Rep. 42 (2009) 163.
- 3) N. Bohr: Philos. Mag. 30 (1915) 581.
- G. F. Knoll: Radiation Detection and Measurement (Wiley, New York, 2000) 3rd ed., Chap. 2.

Condensed from the article in Jpn. J. Appl. Phys. 53, 016401 (2014)

<sup>\*1</sup> RIKEN Nishina Center

<sup>\*2</sup> Faculty of Science and Technology, Tokyo University of Science

<sup>\*&</sup>lt;sup>3</sup> Department of Physics, Osaka University