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Vacuum instability in electric fields via AdS/CFT:
Euler-Heisenberg Lagrangian and Planckian thermalization†

K. Hashimoto∗1∗2 and T. Oka∗3

Extreme environments, such as a strong electric
field, is one of the frontiers to test physical systems and
to reveal new physical phenomena. Particle physics is
not an exception. The physics of quantum fields in
strong external electric fields, i.e., “strong-field quan-
tum field theory” has a very long history which even
dates back to the development era of QED. Neverthe-
less, the dynamics of quantum fields and their vacuum
in strong electromagnetic fields has not been under-
stood well yet, both theoretically and experimentally.
One of the present frontiers of strong field QFT is to
understand the instability of strongly interacting sys-
tems such as the confining vacuum in QCD.

A particular interest is a relation between the con-
finement in QCD and the strong electric field. Because
quarks have electric charges, a strong electric field can
induce a vacuum decay at which pairs of a quark and
an antiquark are produced from the vacuum to can-
cel the background electric field. However to estimate
the threshold critical electric field, as well as to de-
scribe the physical decay process, is a difficult prob-
lem, because of several reasons; first, QCD is strongly
coupled so the standard perturbative calculation does
not work at low energy, and second, strong electro-
magnetic fields induces effective multi-photon vertices
resulting in a complicated nonlinear electromagnetic
effective action.

The renowned method for analyzing strongly cou-
pled system, such as QCD, is the AdS/CFT correspon-
dence1). This is a well-developed tool in string theory
which enables us to analyze strongly coupled QCD an-
alytically. In this paper, we apply the gauge/gravity
duality to a certain strongly coupled QCD-like gauge
theory, and analyze the instability caused by a strong
electric field.

We analyze vacuum instability of strongly cou-
pled gauge theories in a constant electric field using
AdS/CFT correspondence. The model is the N = 2
1-flavor supersymmetric large Nc QCD in the strong
’t Hooft coupling limit.2) We calculate the Euler-
Heisenberg effective Lagrangian L(E), which encodes
the nonlinear response and the quantum decay rate of
the vacuum in a background electric field E, from the
complex D-brane action in AdS/CFT. We find that the
decay rate given by ImL(E) becomes nonzero above a
critical electric field set by the confining force between
quarks. A large E expansion of ImL(E) is found to
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Fig. 1. The imaginary part of the lagrangian of our massive

supersymmetric QCD. We find a critical electric field

beyond which the instability is detected. The critical

electric field means the breaking of the quark confine-

ment.

coincide with that of the Schwinger effects in QED,
replacing its electron mass by the confining force.

Then, the time-dependent response of the system
in a strong electric field is solved non-perturbatively,
and we observe a universal thermalization at a short-
est timescale “Planckian thermalization time” τth ∼

h̄
kBT∞

eff
∼ h̄

kB
E−1/2. Here, T∞

eff is an effective temper-

ature which quarks feel in the nonequilibrium state
with nonzero electric current, calculated in AdS/CFT
as a Hawking temperature. Stronger electric fields ac-
celerate the thermalization, and for a realistic value
of the electric field in RHIC experiment, we obtain
τth ∼ 1 [fm/c], which is consistent with the believed
value.

The main result of the present paper is an analytic
computation of the full electromagnetic effective La-
grangian for a strongly coupled QCD-like gauge the-
ory. In particular, the imaginary part of the effective
Lagrangian shows the decay rate of the vacuum of the
gauge theory. The computed imaginary part is shown
in Fig. 1.
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